Abstract

Robotic manipulators can be used to deposit materials on non-planar surfaces. Conventional sensor-based industrial robots can only work on stationary surfaces, relying on the scanned data prior to printing. As a result, performing depositions that involve changes in plane motion presents significant challenges. The deposition of conformal materials on a time-varying deformable surface requires the manipulators to update coordinates in real time on the plane for positioning and orientation. This can be achieved by employing multiple sensors for manipulator motion planning and control, in order to prevent collisions between the tool and the surface. In this paper, we propose simple tool center point calibration, initial point coordinate estimation, and a gap compensation scheme to combine real-time feedback control and direct conformal deposition. Combining these elements allows us to maintain a controlled gap between the tooltip and the deformable surface during the deposition. We test the efficacy of the proposed approach by printing a single layer of ink patterns with approximately 950 μm line width on a deformable surface. We also characterize the printing quality with different gaps and printing steps and show that sensor-based control is critical in smooth printing. Finally, the effects of changing the relative position of the tooltip, different surface colors, and laser sensor position are characterized.

References

1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
New York
.
2.
Shembekar
,
A. V.
,
Yoon
,
Y. J.
,
Kanyuck
,
A.
, and
Gupta
,
S. K.
,
2019
, “
Generating Robot Trajectories for Conformal Three-Dimensional Printing Using Nonplanar Layers
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
3
), p.
031011
.
3.
Zhang
,
G. Q.
,
Mondesir
,
W.
,
Martinez
,
C.
,
Li
,
X.
,
Fuhlbrigge
,
T. A.
, and
Bheda
,
H.
,
2015
, “
Robotic Additive Manufacturing Along Curved Surface – A Step Towards Free-Form Fabrication
,”
International Conference on Robotics and Biomimetics (ROBIO)
,
Zhuhai, China
,
Dec. 6–9
, IEEE, pp.
721
726
.
4.
Alsharhan
,
A. T.
,
Centea
,
T.
, and
Gupta
,
S. K.
,
2017
, “
Enhancing Mechanical Properties of Thin-Walled Structures Using Non-Planar Extrusion Based Additive Manufacturing
,”
ASME 12th International Manufacturing Science and Engineering Conference Collocated With the JSME/ASME 2017 6th International Conference on Materials and Processing
,
American Society of Mechanical Engineers
.
5.
Zhao
,
G.
,
Ma
,
G.
,
Feng
,
J.
, and
Xiao
,
W.
,
2018
, “
Nonplanar Slicing and Path Generation Methods for Robotic Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9-12
), pp.
3149
3159
.
6.
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Shembeka
,
A. V.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2020
, “
Expanding Capabilities of Additive Manufacturing Through Use of Robotics Technologies: A Survey
,”
Addit. Manuf.
,
31
, p.
100933
.
7.
Bhatt
,
P. M.
,
Kabir
,
A. M.
,
Malhan
,
R. K.
,
Shah
,
B. C.
,
Shembekar
,
A. V.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2019
, “
A Robotic Cell for Multi-resolution Additive Manufacturing
,”
IEEE International Conference on Robotics and Automation.
,
Montreal, QC, Canada
,
May 20–24
.
8.
Yoon
,
Y. J.
,
Shembekar
,
A. V.
,
Almeida
,
O. G.
, and
Gupta
,
S. K.
,
2020
, “
A Robotic Cell for Embedding Prefabricated Components in Extrusion-Based Additive Manufacturing
,”
ASME Manufacturing Science and Engineering Conference
,
Virtual
,
Sept. 3
.
9.
Cai
,
Y.
,
Bhatt
,
P. M.
,
Zhao
,
H.
, and
Gupta
,
S. K.
,
2022
, “
Using an Articulated Industrial Robot to Perform Conformal Deposition With Mesoscale Features
,”
ASME Manufacturing Science and Engineering Conference
,
West Lafayette, IN
,
June 27–July 1
.
10.
Gao
,
W.
,
Zhang
,
Y.
,
Nazzetta
,
D. C.
,
Ramani
,
K.
, and
Cipra
,
R. J.
,
2015
, “
RevoMaker: Enabling Multi-directional and Functionally-Embedded 3D Printing Using a Rotational Cuboidal Platform
,”
Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology
,
Charlotte, NC
,
Nov. 8–11
, ACM, pp.
437
446
.
11.
Song
,
X.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2015
, “
Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021005
.
12.
Bhatt
,
P. M.
,
Gong
,
C.
,
Kabir
,
A. M.
,
Malhan
,
R. K.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2020
, “
Incorporating Tool Contact Considerations in Tool-Path Planning for Robotic Operations
,”
ASME Manufacturing Science and Engineering Conference
,
virtual
,
Sept. 3
.
13.
Zhu
,
Z.
,
Park
,
H. S.
, and
McAlpine
,
M. C.
,
2020
, “
3D Printed Deformable Sensors
,”
Sci. Adv.
,
6
(
25
), p.
eaba5575
.
14.
Neto
,
P.
,
2013
, “
Off-line Programming and Simulation From CAD Drawings: Robot-Assisted Sheet Metal Bending
,”
IECON 2013 – 39th Annual Conference of the IEEE Industrial Electronics Society
,
Vienna, Austria
,
Nov. 10–13
, pp.
4235
4240
.
15.
Perumaal
,
S. S.
, and
Jawahar
,
N.
,
2013
, “
Automated Trajectory Planner of Industrial Robot for Pick-and-Place Task
,”
Int. J. Adv. Rob. Syst.
,
10
(
2
), p.
100
.
16.
Kabir
,
A. M.
,
Langsfeld
,
J. D.
,
Zhuang
,
C.
,
Kaipa
,
K. N.
, and
Gupta
,
S. K.
,
2016
, “
Automated Learning of Operation Parameters for Robotic Cleaning by Mechanical Scrubbing
,”
ASME 11th International Manufacturing Science and Engineering Conference, Vol. 2
,
Blacksburg, VA
,
June 27–July 1
.
17.
Langsfeld
,
J. D.
,
Kabir
,
A. M.
,
Kaipa
,
K. N.
, and
Gupta
,
S. K.
,
2018
, “
Integration of Planning and Deformation Model Estimation for Robotic Cleaning of Elastically Deformable Objects
,”
IEEE Rob. Autom. Lett.
,
3
(
1
), pp.
352
359
.
18.
Cai
,
Y.
,
Han
,
Z.
,
Cranney
,
T.
,
Zhao
,
H.
, and
Gupta
,
S. K.
,
2021
, “
Automated Robotic Assembly of 3D Mesostructure Via Guided Mechanical Buckling
,”
2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)
,
Lyon, France
,
Aug. 23–27
, IEEE, pp.
2098
2104
.
19.
Wang
,
X.
,
Xue
,
L.
,
Yan
,
Y.
, and
Gu
,
X.
,
2017
, “
Welding Robot Collision-Free Path Optimization
,”
Appl. Sci.
,
7
(
2
), p.
89
.
20.
Chidhambara
,
K. V.
,
Shankar
,
B. L.
, and
Vijaykumar
,
2018
, “
Optimization of Robotic Spray Painting Process Parameters Using Taguchi Method
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
310
(
1
), p.
012108
.
21.
Bhatt
,
P. M.
,
Kabir
,
A. M.
,
Malhan
,
R. K.
,
Shah
,
B.
,
Shembekar
,
A. V.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2019
, “
A Robotic Cell for Multi-resolution Additive Manufacturing
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, IEEE, pp.
2800
2807
.
22.
Urhal
,
P.
,
Weightman
,
A.
,
Diver
,
C.
, and
Bartolo
,
P.
,
2019
, “
Robot Assisted Additive Manufacturing: A Review
,”
Rob. Comput. Integr. Manuf.
,
59
, pp.
335
345
.
23.
Xiong
,
J.
,
Yin
,
Z.
, and
Zhang
,
W.
,
2016
, “
Closed-loop Control of Variable Layer Width for Thin-Walled Parts in Wire and Arc Additive Manufacturing
,”
J. Mater. Process. Technol.
,
233
, pp.
100
106
.
24.
Zhang
,
Z.
,
Zhao
,
Z.
,
Zhang
,
Y.
, and
Liu
,
S.
,
2022
, “
Multi-process Logistics Planning for Cost Minimization and Workload Balance in Steel Production Systems
,”
2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)
,
Shanghai, China
,
Dec. 15–18
, pp.
1
6
.
25.
Adams
,
J. J.
,
Duoss
,
E. B.
,
Malkowski
,
T. F.
,
Motala
,
M. J.
,
Ahn
,
B. Y.
,
Nuzzo
,
R. G.
,
Bernhard
,
J. T.
, and
Lewis
,
J. A.
,
2011
, “
Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces
,”
Adv. Mater.
,
23
(
11
), pp.
1335
1340
.
26.
Schaffner
,
M.
,
Rühs
,
P. A.
,
Coulter
,
F.
,
Kilcher
,
S.
, and
Studart
,
A. R.
,
2017
, “
3D Printing of Bacteria Into Functional Complex Materials
,”
Sci. Adv.
,
3
(
12
), p.
eaao6804
.
27.
Su
,
R.
,
Wen
,
J.
,
Su
,
Q.
,
Wiederoder
,
M. S.
,
Koester
,
S. J.
,
Uzarski
,
J. R.
, and
McAlpine
,
M. C.
,
2020
, “
3d Printed Self-Supporting Elastomeric Structures for Multifunctional Microfluidics
,”
Sci. Adv.
,
6
(
41
), p.
eabc9846
.
28.
Bhatt
,
P. M.
,
Kulkarni
,
A.
,
Malhan
,
R. K.
,
Shah
,
B. C.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2022
, “
Automated Planning for Robotic Multi-resolution Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021006
.
29.
Johnson
,
R. A.
,
O’Neill
,
J. J.
,
Dockter
,
R. L.
, and
Kowalewski
,
T. M.
,
2017
, “
Toward Inkjet Additive Manufacturing Directly Onto Human Anatomy
,”
Vol. 2017 Design of Medical Devices Conference of Frontiers in Biomedical Devices.
30.
O’Neill
,
J. J.
,
Johnson
,
R. A.
,
Dockter
,
R. L.
, and
Kowalewski
,
T. M.
,
2017
, “
3D Bioprinting Directly Onto Moving Human Anatomy
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, IEEE, pp.
934
940
.
31.
Zhu
,
Z.
,
Guo
,
S.-Z.
,
Hirdler
,
T.
,
Eide
,
C.
,
Fan
,
X.
,
Tolar
,
J.
, and
McAlpine
,
M. C.
,
2018
, “
3D Printed Functional and Biological Materials on Moving Freeform Surfaces
,”
Adv. Mater.
,
30
(
23
), p.
1707495
.
32.
Zhu
,
Z.
,
Ng
,
D. W. H.
,
Park
,
H. S.
, and
McAlpine
,
M. C.
,
2021
, “
3D-Printed Multifunctional Materials Enabled by Artificial-Intelligence-Assisted Fabrication Technologies
,”
Nat. Rev. Mater.
,
6
(
1
), pp.
27
47
.
33.
Kraljić
,
D.
, and
Kamnik
,
R.
,
2018
, “
Trajectory Planning for Additive Manufacturing With a 6DOF Industrial Robot
,”
International Conference on Robotics in Alpe-Adria Danube Region
,
Patras, Greece
,
June 6–8
, Springer, pp.
456
465
.
34.
Bhatt
,
P. M.
,
McNulty
,
Z.
, and
Gupta
,
S. K.
,
2022
, “
Robot Trajectory Generation for Multi-axis Wire Arc Additive Manufacturing
,”
ASME Manufacturing Science and Engineering Conference.
,
West Lafayette, IN
,
June 27–July 1
.
35.
Holness
,
F. B.
, and
Price
,
A. D.
,
2016
, “Robotic Extrusion Processes for Direct Ink Writing of 3D Conductive Polyaniline Structures,”
Electroactive Polymer Actuators and Devices (EAPAD) (International Society for Optics and Photonics
, Vol.
9798
,
Y.
Bar-Cohen
and
F.
Vidal
, eds.,
SPIE
,
Washington, DC
, p.
97981G
.
36.
Jin
,
Y.
,
Du
,
J.
,
He
,
Y.
, and
Fu
,
G.
,
2017
, “
Modeling and Process Planning for Curved Layer Fused Deposition
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
273
285
.
37.
Lim
,
S.
,
Buswell
,
R. A.
,
Valentine
,
P. J.
,
Piker
,
D.
,
Austin
,
S. A.
, and
De Kestelier
,
X.
,
2016
, “
Modelling Curved-Layered Printing Paths for Fabricating Large-Scale Construction Components
,”
Addit. Manuf.
,
12
(
B
), pp.
216
230
.
38.
Kim
,
C.
,
Espalin
,
D.
,
Cuaron
,
A.
,
Perez
,
M. A.
,
Lee
,
M.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2015
, “
Cooperative Tool Path Planning for Wire Embedding on Additively Manufactured Curved Surfaces Using Robot Kinematics
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021003
.
39.
Pratt
,
V.
,
1987
,
Direct Least-Squares Fitting of Algebraic Surfaces
, Vol.
21
,
ACM
,
New York, NY
, pp.
145
152
.
You do not currently have access to this content.