Abstract

Creating multilayered channels for mimicking human blood vessels in thick tissues is the main challenge to overcome in organ biofabrication. Current three-dimensional (3D) printing strategies cannot effectively manufacture hollow channels with multiple layers. This study aims to propose a coaxial nozzle-assisted embedded 3D printing method in which core–shell filaments can be formed in a yield-stress matrix bath by extruding different ink materials through the corresponding channels. The materials selected for the core ink, shell ink, and matrix bath are Pluronic F127 (F127) and calcium chloride (CaCl2), sodium alginate (NaAlg), and poly(ethylene glycol) diacrylate (PEGDA) and nanoclay, respectively. After crosslinking the matrix bath and shell, the core layer made from the sacrificial ink (F127) is removed to generate a single-layered, hollow channel. In this work, the effects of ink material properties and operating conditions on core–shell filament formation have been systematically studied. The rheological and mechanical properties of the yield-stress matrix bath have been characterized as well. A thick tissue-like structure with embedded single-layered, hollow channels has been successfully printed for demonstration. Since it is feasible to design coaxial nozzles with a core–shell–shell architecture, the proposed method is technically extendable to create double-layered channels within a cellular tissue construct, accurately mimicking human blood vascular networks in thick tissues in the future.

References

1.
Kolesky
,
D. B.
,
Homan
,
K. A.
,
Skylar-Scott
,
M. A.
, and
Lewis
,
J. A.
,
2016
, “
Three-Dimensional Bioprinting of Thick Vascularized Tissues
,”
Proc. Natl. Acad. Sci.
,
113
(
12
), pp.
3179
3184
.
2.
Yang
,
C.
,
Yu
,
Y.
,
Wang
,
X.
,
Wang
,
Q.
, and
Shang
,
L.
,
2021
, “
Cellular Fluidic-Based Vascular Networks for Tissue Engineering
,”
Eng. Regen.
,
2
, pp.
171
174
.
3.
Kolesky
,
D. B.
,
Truby
,
R. L.
,
Gladman
,
A. S.
,
Busbee
,
T. A.
,
Homan
,
K. A.
, and
Lewis
,
J. A.
,
2014
, “
3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs
,”
Adv. Mater.
,
26
(
19
), pp.
3124
3130
.
4.
Cui
,
X.
, and
Boland
,
T.
,
2009
, “
Human Microvasculature Fabrication Using Thermal Inkjet Printing Technology
,”
Biomaterials
,
30
(
31
), pp.
6221
6227
.
5.
Miller
,
J. S.
,
Stevens
,
K. R.
,
Yang
,
M. T.
,
Baker
,
B. M.
,
Nguyen
,
D.-H. T.
,
Cohen
,
D. M.
,
Toro
,
E.
, et al
,
2012
, “
Rapid Casting of Patterned Vascular Networks for Perfusable Engineered Three-Dimensional Tissues
,”
Nat. Mater.
,
11
(
9
), pp.
768
774
.
6.
Attalla
,
R.
,
Ling
,
C.
, and
Selvaganapathy
,
P.
,
2016
, “
Fabrication and Characterization of Gels With Integrated Channels Using 3D Printing With Microfluidic Nozzle for Tissue Engineering Applications
,”
Biomed. Microdevices
,
18
(
1
), p.
17
.
7.
Skylar-Scott
,
M. A.
,
Uzel
,
S. G. M.
,
Nam
,
L. L.
,
Ahrens
,
J. H.
,
Truby
,
R. L.
,
Damaraju
,
S.
, and
Lewis
,
J. A.
,
2019
, “
Biomanufacturing of Organ-Specific Tissues With High Cellular Density and Embedded Vascular Channels
,”
Sci. Adv.
,
5
(
9
), p.
eaaw2459
.
8.
Lin
,
N. Y.
,
Homan
,
K. A.
,
Robinson
,
S. S.
,
Kolesky
,
D. B.
,
Duarte
,
N.
, and
Lewis
,
J. A.
, “
Renal Reabsorption in 3D Vascularized Proximal Tubule Models
,”
Proc. Natl. Acad. Sci.
,
116
(
12
), pp.
5399
5404
.
9.
Hua
,
W.
,
Mitchell
,
K.
,
Raymond
,
L.
,
Valentin
,
N.
,
Coulter
,
R.
, and
Jin
,
Y.
,
2023
, “
Embedded 3D Printing of PDMS-Based Microfluidic Chips for Biomedical Applications
,”
ASME J. Manuf. Sci. Eng.
,
145
(
1
), p.
011002
.
10.
Lorang
,
D. J.
,
Tanaka
,
D.
,
Spadaccini
,
C. M.
,
Rose
,
K. A.
,
Cherepy
,
N. J.
, and
Lewis
,
J. A.
,
2011
, “
Photocurable Liquid Core–Fugitive Shell Printing of Optical Waveguides
,”
Adv. Mater.
,
23
(
43
), pp.
5055
5058
.
11.
Zhao
,
Z.
,
Soni
,
S.
,
Lee
,
T.
,
Nijhuis
,
C. A.
, and
Xiang
,
D.
,
2023
, “
Smart Eutectic Gallium–Indium: From Properties to Applications
,”
Adv. Mater.
,
35
(
1
), p.
2203391
.
12.
Lee
,
K. H.
,
Shin
,
S. J.
,
Park
,
Y.
, and
Lee
,
S.-H.
,
2009
, “
Synthesis of Cell-Laden Alginate Hollow Fibers Using Microfluidic Chips and Microvascularized Tissue-Engineering Applications
,”
Small
,
5
(
11
), pp.
1264
1268
.
13.
Chen
,
Y.
,
Liu
,
Y.
,
Ren
,
J.
,
Yang
,
W.
,
Shang
,
E.
,
Ma
,
K.
,
Zhang
,
L.
,
Jiang
,
J.
, and
Sun
,
X.
,
2020
, “
Conformable Core-Shell Fiber Tactile Sensor by Continuous Tubular Deposition Modeling With Water-Based Sacrificial Coaxial Writing
,”
Mater. Des.
,
190
, p.
108567
.
14.
Karyappa
,
R.
,
Goh
,
W. H.
, and
Hashimoto
,
M.
,
2022
, “
Embedded Core–Shell 3D Printing (ECS3DP) With Low-Viscosity Polysiloxanes
,”
ACS Appl. Mater. Interfaces
,
14
(
36
), pp.
41520
41530
.
15.
Gao
,
Q.
,
He
,
Y.
,
Fu
,
J.
,
Liu
,
A.
, and
Ma
,
L.
,
2015
, “
Coaxial Nozzle-Assisted 3D Bioprinting With Built-in Microchannels for Nutrients Delivery
,”
Biomaterials
,
61
, pp.
203
215
.
16.
Zhou
,
K.
,
Dey
,
M.
,
Ayan
,
B.
,
Zhang
,
Z.
,
Ozbolat
,
V.
,
Kim
,
M. H.
,
Khristov
,
V.
, and
Ozbolat
,
I. T.
,
2021
, “
Fabrication of PDMS Microfluidic Devices Using Nanoclay-Reinforced Pluronic F-127 as a Sacrificial Ink
,”
Biomed. Mater.
,
16
(
4
), p.
045005
.
17.
Hua
,
W.
,
Mitchell
,
K.
,
Raymond
,
L.
,
Godina
,
B.
,
Zhao
,
D.
,
Zhou
,
W.
, and
Jin
,
Y.
,
2021
, “
Fluid Bath-Assisted 3D Printing for Biomedical Applications: From Pre- to Postprinting Stages
,”
ACS Biomater. Sci. Eng.
,
7
(
10
), pp.
4736
4756
.
18.
Shamma
,
R. N.
,
Sayed
,
R. H.
,
Madry
,
H.
,
El Sayed
,
N. S.
, and
Cucchiarini
,
M.
, “
Triblock Copolymer Bioinks in Hydrogel Three-Dimensional Printing for Regenerative Medicine: A Focus on Pluronic F127
,”
Tissue Eng., Part B
,
28
(
2
), pp.
451
463
.
19.
Ren
,
B.
,
Song
,
K.
,
Sanikommu
,
A. R.
,
Chai
,
Y.
,
Longmire
,
M. A.
,
Chai
,
W.
,
Murfee
,
W. L.
, and
Huang
,
Y.
,
2022
, “
Study of Sacrificial Ink-Assisted Embedded Printing for 3D Perfusable Channel Creation for Biomedical Applications
,”
Appl. Phys. Rev.
,
9
(
1
), p.
011408
.
20.
Hua
,
W.
,
Mitchell
,
K.
,
Kariyawasam
,
L. S.
,
Do
,
C.
,
Chen
,
J.
,
Raymond
,
L.
,
Valentin
,
N.
,
Coulter
,
R.
,
Yang
,
Y.
, and
Jin
,
Y.
,
2022
, “
Three-Dimensional Printing in Stimuli-Responsive Yield-Stress Fluid With an Interactive Dual Microstructure
,”
ACS Appl. Mater. Interfaces
,
14
(
34
), pp.
39420
39431
.
21.
Bohorquez
,
M.
,
Koch
,
C.
,
Trygstad
,
T.
, and
Pandit
,
N.
,
1999
, “
A Study of the Temperature-Dependent Micellization of Pluronic F127
,”
J. Colloid Interface Sci.
,
216
(
1
), pp.
34
40
.
22.
Wu
,
C.
,
Liu
,
T.
,
Chu
,
B.
,
Schneider
,
D. K.
, and
Graziano
,
V.
,
1997
, “
Characterization of the PEO−PPO−PEO Triblock Copolymer and Its Application as a Separation Medium in Capillary Electrophoresis
,”
Macromolecules
,
30
(
16
), pp.
4574
4583
.
23.
Desai
,
P. R.
,
Jain
,
N. J.
,
Sharma
,
R. K.
, and
Bahadur
,
P.
,
2001
, “
Effect of Additives on the Micellization of PEO/PPO/PEO Block Copolymer F127 in Aqueous Solution
,”
Colloids Surf., A
,
178
(
1
), pp.
57
69
.
24.
Perry
,
C. C.
,
Sabir
,
T. S.
,
Livingston
,
W. J.
,
Milligan
,
J. R.
,
Chen
,
Q.
,
Maskiewicz
,
V.
, and
Boskovic
,
D. S.
,
2011
, “
Fluorescence of Commercial Pluronic F127 Samples: Temperature-Dependent Micellization
,”
J. Colloid Interface Sci.
,
354
(
2
), pp.
662
669
.
25.
Lee
,
K. Y.
, and
Mooney
,
D. J.
,
2012
, “
Alginate: Properties and Biomedical Applications
,”
Prog. Polym. Sci.
,
37
(
1
), pp.
106
126
.
26.
Ahmad Raus
,
R.
,
Wan Nawawi
,
W. M. F.
, and
Nasaruddin
,
R. R.
,
2021
, “
Alginate and Alginate Composites for Biomedical Applications
,”
Asian J. Pharm. Sci.
,
16
(
3
), pp.
280
306
.
27.
Szekalska
,
M.
,
Puciłowska
,
A.
,
Szymańska
,
E.
,
Ciosek
,
P.
, and
Winnicka
,
K.
,
2016
, “
Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications
,”
Int. J. Polym. Sci.
,
2016
, pp.
1
17
.
28.
Jin
,
Y.
,
Chai
,
W.
, and
Huang
,
Y.
,
2017
, “
Printability Study of Hydrogel Solution Extrusion in Nanoclay Yield-Stress Bath During Printing-Then-Gelation Biofabrication
,”
Mater. Sci. Eng. C
,
80
, pp.
313
325
.
29.
Maxemow
,
S.
,
2009
, “
That’s a Drag: The Effects of Drag Forces
,”
Undergrad. J. Math. Model. One Two
,
2
(
1
).
30.
Riva
,
C. E.
,
Grunwald
,
J. E.
,
Sinclair
,
S. H.
, and
Petrig
,
B. L.
,
1985
, “
Blood Velocity and Volumetric Flow Rate in Human Retinal Vessels
,”
Invest. Ophthalmol. Vis. Sci.
,
26
(
8
), pp.
1124
1132
.
31.
Naeimirad
,
M.
, and
Zadhoush
,
A.
,
2018
, “
Melt-Spun Liquid Core Fibers: A CFD Analysis on Biphasic Flow in Coaxial Spinneret Die
,”
Fibers Polym.
,
19
(
4
), pp.
905
913
.
32.
Yu
,
I.
, and
Chen
,
R.
,
2021
, “
An Experimental and Numerical Study on Coaxial Extrusion of a Non-Newtonian Hydrogel Material
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p.
081008
.
33.
Zaeri
,
A.
,
Zgeib
,
R.
,
Cao
,
K.
,
Zhang
,
F.
, and
Chang
,
R. C.
,
2022
, “
Numerical Analysis on the Effects of Microfluidic-Based Bioprinting Parameters on the Microfiber Geometrical Outcomes
,”
Sci. Rep.
,
12
(
1
), p.
3364
.
34.
Cramer
,
C.
,
Fischer
,
P.
, and
Windhab
,
E. J.
,
2004
, “
Drop Formation in a Co-Flowing Ambient Fluid
,”
Chem. Eng. Sci.
,
59
(
15
), pp.
3045
3058
.
35.
Singh
,
R.
,
Ahmed
,
F.
,
Polley
,
P.
, and
Giri
,
J.
,
2018
, “
Fabrication and Characterization of Core–Shell Nanofibers Using a Next-Generation Airbrush for Biomedical Applications
,”
ACS Appl. Mater. Interfaces
,
10
(
49
), pp.
41924
41934
.
36.
Hua
,
W.
,
Zhang
,
C.
,
Raymond
,
L.
,
Mitchell
,
K.
,
Wen
,
L.
,
Yang
,
Y.
,
Zhao
,
D.
,
Liu
,
S.
, and
Jin
,
Y.
,
2023
, “
3D Printing-Based Full-Scale Human Brain for Diverse Applications
,”
Brain-X
,
1
(
1
), p.
e5
.
37.
Turturro
,
M. V.
,
Sokic
,
S.
,
Larson
,
J. C.
, and
Papavasiliou
,
G.
,
2013
, “
Effective Tuning of Ligand Incorporation and Mechanical Properties in Visible Light Photopolymerized Poly(Ethylene Glycol) Diacrylate Hydrogels Dictates Cell Adhesion and Proliferation
,”
Biomed. Mater.
,
8
(
2
), p.
025001
.
38.
Peyton
,
S. R.
,
Raub
,
C. B.
,
Keschrumrus
,
V. P.
, and
Putnam
,
A. J.
,
2006
, “
The Use of Poly(Ethylene Glycol) Hydrogels to Investigate the Impact of ECM Chemistry and Mechanics on Smooth Muscle Cells
,”
Biomaterials
,
27
(
28
), pp.
4881
4893
.
39.
Cao
,
X.
,
Maharjan
,
S.
,
Ashfaq
,
R.
,
Shin
,
J.
, and
Zhang
,
Y. S.
,
2021
, “
Bioprinting of Small-Diameter Blood Vessels
,”
Engineering
,
7
(
6
), pp.
832
844
.
40.
Lovett
,
M.
,
Cannizzaro
,
C.
,
Daheron
,
L.
,
Messmer
,
B.
,
Vunjak-Novakovic
,
G.
, and
Kaplan
,
D. L.
,
2007
, “
Silk Fibroin Microtubes for Blood Vessel Engineering
,”
Biomaterials
,
28
(
35
), pp.
5271
5279
.
41.
Klemm
,
D.
,
Schumann
,
D.
,
Udhardt
,
U.
, and
Marsch
,
S.
,
2001
, “
Bacterial Synthesized Cellulose—Artificial Blood Vessels for Microsurgery
,”
Prog. Polym. Sci.
,
26
(
9
), pp.
1561
1603
.
42.
Mohrman
,
D. E.
, and
Heller
,
L.
,
2018
,
Cardiovascular Physiology, 9e
,
McGraw-Hill Education
,
New York, NY
. https://accessmedicine.mhmedical.com/content.aspx?bookid=2432&sectionid=190800315
43.
Urade
,
S. D.
,
Bhope
,
D. V.
, and
Khamankar
,
S. D.
,
2014
, “
Stress Analysis of Multilayer Pressure Vessel
,”
Int. J. Eng. Tech. Res.
,
2
(
9
), pp.
34
43
.
44.
Bhattacharyya
,
A.
,
Ham
,
H.-w.
,
Sonh
,
J.
,
Gunbayar
,
M.
,
Jeffy
,
R.
,
Nagarajan
,
R.
,
Khatun
,
M. R.
, and
Noh
,
I.
,
2023
, “
3D Bioprinting of Complex Tissue Scaffolds With In Situ Homogeneously Mixed Alginate-Chitosan-Kaolin Bioink Using Advanced Portable Biopen
,”
Carbohydr. Polym.
,
317
, p.
121046
.
45.
Adib
,
A. A.
,
Sheikhi
,
A.
,
Shahhosseini
,
M.
,
Simeunović
,
A.
,
Wu
,
S.
,
Castro
,
C. E.
,
Zhao
,
R.
,
Khademhosseini
,
A.
, and
Hoelzle
,
D. J.
,
2020
, “
Direct-Write 3D Printing and Characterization of a GelMA-Based Biomaterial for Intracorporeal Tissue Engineering
,”
Biofabrication
,
12
(
4
), p.
045006
.
46.
Yin
,
J.
,
Yan
,
M.
,
Wang
,
Y.
,
Fu
,
J.
, and
Suo
,
H.
,
2018
, “
3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks With a Two-Step Cross-Linking Strategy
,”
ACS Appl. Mater. Interfaces
,
10
(
8
), pp.
6849
6857
.
47.
Ying
,
G.
,
Jiang
,
N.
,
Yu
,
C.
, and
Zhang
,
Y. S.
,
2018
, “
Three-Dimensional Bioprinting of Gelatin Methacryloyl (GelMA)
,”
Bio-Des. Manuf.
,
1
(
4
), pp.
215
224
.
48.
Zhang
,
Z.
, and
Xie
,
D.
,
2023
, “
A Mesh Insensitive Finite Element Method to Compute Statical Stability Curve of Floating Bodies With Arbitrary Configurations Based on a Force-Oriented Approach
,”
Int. J. Numer. Methods Eng.
,
124
(
7
), pp.
1672
1695
.
You do not currently have access to this content.