Abstract

This work aims to study the cutting behavior of biocomposites under different controlled hygrothermal conditions. This investigation choice is motivated by the fact that natural plant fibers such as flax are characterized by their hydrophilicity which makes them able to absorb water from a humid environment. This absorption ability is intensified by increasing the conditioning temperature. The moisture diffusion process affects considerably the mechanical properties of the resulting composite, which causes many issues during the machining operations. In this paper, moisture diffusion, chip form, cutting and thrust forces, and scanning electron microscope (SEM) observations are considered to explore the cutting behavior of flax fiber-reinforced polylactic acid (PLA) depending on the hygrothermal conditioning time. Results reveal that moisture content in the biocomposite is significantly influenced by the conditioning temperature and the fiber orientation. Moisture content and fiber orientation affect both the curling behavior of the removed chip as well as the tool/chip interaction in terms of friction. The machinability of flax fiber-reinforced PLA biocomposites depending on hygrothermal conditioning time is then investigated using SEM analysis in addition to analytical modeling. An analysis of variance is used finally to quantify the observed results.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Akampumuza
,
O.
,
Wambua
,
P. M.
,
Ahmed
,
A.
,
Li
,
W.
, and
Qin
,
X.-H. H
.,
2017
, “
Review of the Applications of Biocomposites in the Automotive Industry
,”
Polym. Compos.
,
38
(
11
), pp.
2553
2569
.
2.
Soni
,
A.
,
Kumar
,
S.
,
Majumder
,
B.
,
Dam
,
H.
,
Dutta
,
V.
, and
Das
,
P. K
.,
2023
, “
Synergy of Waste Plastics and Natural Fibers as Sustainable Composites for Structural Applications Concerning Circular Economy
,”
Environ. Sci. Pollut. Res.
, pp.
1
20
.
3.
Choudhary
,
S.
,
Haloi
,
J.
,
Sain
,
M. K.
, and
Saraswat
,
P
.,
2023
, “Advantages and Applications of Natural Fiber Reinforced Hybrid Polymer Composites in Automobiles: A Literature Review,”
Lecture Notes in Mechanical Engineering
,
F.
Chaari
,
F.
Gherardini
,
V.
Ivanov
, and
M.
Haddar
, eds.,
Springer
,
Singapore
, pp.
645
659
.
4.
Akhil
,
U. V.
,
Radhika
,
N.
,
Saleh
,
B.
,
Aravind Krishna
,
S.
,
Noble
,
N.
, and
Rajeshkumar
,
L
.,
2023
, “
A Comprehensive Review on Plant-Based Natural Fiber Reinforced Polymer Composites: Fabrication, Properties, and Applications
,”
Polym. Compos.
,
44
(
5
), pp.
2598
2633
.
5.
Shah
,
D. U
.,
2013
, “
Developing Plant Fibre Composites for Structural Applications by Optimising Composite Parameters: A Critical Review
,”
J. Mater. Sci.
,
48
(
18
), pp.
6083
6107
.
6.
Nassar
,
M. M. A.
,
Arunachalam
,
R.
, and
Alzebdeh
,
K. I
.,
2017
, “
Machinability of Natural Fiber Reinforced Composites: A Review
,”
Int. J. Adv. Manuf. Technol.
,
88
(
9–12
), pp.
2985
3004
.
7.
Chegdani
,
F.
, and
El Mansori
,
M
.,
2021
, “
Machining Behavior of Natural Fiber Composites
,”
Encycl. Mater. Compos.
,
3
, pp.
168
185
.
8.
Alarifi
,
I. M
.,
2023
, “
A Review on Factors Affecting Machinability and Properties of Fiber-Reinforced Polymer Composites
,”
J. Nat. Fibers
,
20
(
1
)
2154304
.
9.
Baley
,
C.
, and
Bourmaud
,
A
.,
2021
, “
Multiscale Structure of Plant Fibers
,”
Encycl. Mater. Compos.
,
3
, pp.
117
134
.
10.
Chegdani
,
F.
, and
El Mansori
,
M
.,
2019
, “
New Multiscale Approach for Machining Analysis of Natural Fiber Reinforced Bio-Composites
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
11004
.
11.
Moudood
,
A.
,
Rahman
,
A.
,
Khanlou
,
H. M.
,
Hall
,
W.
,
Öchsner
,
A.
, and
Francucci
,
G
.,
2019
, “
Environmental Effects on the Durability and the Mechanical Performance of Flax Fiber/Bio-Epoxy Composites
,”
Composites Part B
,
171
, pp.
284
293
.
12.
Assarar
,
M.
,
Scida
,
D.
,
El Mahi
,
A.
,
Poilâne
,
C.
, and
Ayad
,
R
.,
2011
, “
Influence of Water Ageing on Mechanical Properties and Damage Events of Two Reinforced Composite Materials: Flax-Fibres and Glass-Fibres
,”
Mater. Des.
,
32
(
2
), pp.
788
795
.
13.
Chilali
,
A.
,
Zouari
,
W.
,
Assarar
,
M.
,
Kebir
,
H.
, and
Ayad
,
R
.,
2018
, “
Effect of Water Ageing on the Load-Unload Cyclic Behaviour of Flax Fibre-Reinforced Thermoplastic and Thermosetting Composites
,”
Compos. Struct.
,
183
(
1
), pp.
309
319
.
14.
Placet
,
V.
,
Cisse
,
O.
, and
Boubakar
,
M. L
.,
2012
, “
Influence of Environmental Relative Humidity on the Tensile and Rotational Behaviour of Hemp Fibres
,”
J. Mater. Sci.
,
47
(
7
), pp.
3435
3446
.
15.
Stamboulis
,
A.
,
Baillie
,
C. A.
, and
Peijs
,
T
.,
2001
, “
Effects of Environmental Conditions on Mechanical and Physical Properties of Flax Fibers
,”
Composites Part A
,
32
(
8
), pp.
1105
1115
.
16.
Raj
,
S. S. R.
,
Dhas
,
J. E. R.
, and
Jesuthanam
,
C. P
.,
2021
, “
Challenges on Machining Characteristics of Natural Fiber-Reinforced Composites – A Review
,”
J. Reinf. Plast. Compos.
,
40
(
1–2
), pp.
41
69
.
17.
Baley
,
C
.,
2002
, “
Analysis of the Flax Fibres Tensile Behaviour and Analysis of the Tensile Stiffness Increase
,”
Composites Part A
,
33
(
7
), pp.
939
948
.
18.
Chegdani
,
F.
,
Takabi
,
B.
,
El Mansori
,
M.
,
Tai
,
B. L.
, and
Bukkapatnam
,
S. T. S
.,
2020
, “
Effect of Flax Fiber Orientation on Machining Behavior and Surface Finish of Natural Fiber Reinforced Polymer Composites
,”
J. Manuf. Process.
,
54
, pp.
337
346
.
19.
Chegdani
,
F.
,
Mezghani
,
S.
, and
El Mansori
,
M
.,
2015
, “
Experimental Study of Coated Tools Effects in Dry Cutting of Natural Fiber Reinforced Plastics
,”
Surf. Coatings Technol.
,
284
, pp.
264
272
.
20.
Chegdani
,
F.
, and
El Mansori
,
M
.,
2018
, “
Friction Scale Effect in Drilling Natural Fiber Composites
,”
Tribol. Int.
,
119
, pp.
622
630
.
21.
Chegdani
,
F.
,
Mezghani
,
S.
, and
El Mansori
,
M
.,
2016
, “
On the Multiscale Tribological Signatures of the Tool Helix Angle in Profile Milling of Woven Flax Fiber Composites
,”
Tribol. Int.
,
100
, pp.
132
140
.
22.
Chegdani
,
F.
,
Takabi
,
B.
,
Tai
,
B. L.
,
El Mansori
,
M.
, and
Bukkapatnam
,
S. T. S.
,
2018
, “
Thermal Effects on Tribological Behavior in Machining Natural Fiber Composites
,”
Procedia Manuf.
,
26
, pp.
305
316
.
23.
Díaz-Álvarez
,
A.
,
Díaz-Álvarez
,
J.
,
Cantero
,
J. L.
, and
Santiuste
,
C
.,
2020
, “
Analysis of Orthogonal Cutting of Biocomposites
,”
Compos. Struct.
,
234
, p.
111734
.
24.
Chegdani
,
F.
, and
El Mansori
,
M.
,
2018
, “
Mechanics of Material Removal When Cutting Natural Fiber Reinforced Thermoplastic Composites
,”
Polym. Test.
,
67
, pp.
275
283
.
25.
Chegdani
,
F.
,
El Mansori
,
M.
, and
Chebbi
,
A. A
.,
2021
, “
Cutting Behavior of Flax Fibers as Reinforcement of Biocomposite Structures Involving Multiscale Hygrometric Shear
,”
Composites Part B
,
211
, p.
108660
.
26.
Regazzi
,
A.
,
Corn
,
S.
,
Ienny
,
P.
,
Bénézet
,
J.-C. C.
, and
Bergeret
,
A
.,
2016
, “
Reversible and Irreversible Changes in Physical and Mechanical Properties of Biocomposites During Hydrothermal Aging
,”
Ind. Crops Prod.
,
84
, pp.
358
365
.
27.
Scida
,
D.
,
Assarar
,
M.
,
Poilâne
,
C.
, and
Ayad
,
R
.,
2013
, “
Influence of Hygrothermal Ageing on the Damage Mechanisms of Flax-Fibre Reinforced Epoxy Composite
,”
Composites Part B
,
48
, pp.
51
58
.
28.
Li
,
Y.
, and
Xue
,
B
.,
2016
, “
Hydrothermal Ageing Mechanisms of Unidirectional Flax Fabric Reinforced Epoxy Composites
,”
Polym. Degrad. Stab.
,
126
, pp.
144
158
.
29.
Thuault
,
A.
,
Eve
,
S.
,
Blond
,
D.
,
Bréard
,
J.
, and
Gomina
,
M
.,
2014
, “
Effects of the Hygrothermal Environment on the Mechanical Properties of Flax Fibres
,”
J. Compos. Mater.
,
48
(
14
), pp.
1699
1707
.
30.
Bos
,
H. L.
,
Molenveld
,
K.
,
Teunissen
,
W.
,
van Wingerde
,
A. M.
, and
van Delft
,
D. R. V
,
2004
, “
Compressive Behaviour of Unidirectional Flax Fibre Reinforced Composites
,”
J. Mater. Sci.
,
39
(
6
), pp.
2159
2168
.
31.
Marrot
,
L.
,
Lefeuvre
,
A.
,
Pontoire
,
B.
,
Bourmaud
,
A.
, and
Baley
,
C
.,
2013
, “
Analysis of the Hemp Fiber Mechanical Properties and Their Scattering (Fedora 17)
,”
Ind. Crops Prod.
,
51
, pp.
317
327
.
32.
Chegdani
,
F.
,
El Mansori
,
M.
,
T. S.
Bukkapatnam
,
S.
,
and Reddy
,
J.
N
.,
2019
, “
Micromechanical Modeling of the Machining Behavior of Natural Fiber-Reinforced Polymer Composites
,”
Int. J. Adv. Manuf. Technol.
,
105
(
1–4
), pp.
1549
1561
.
33.
Omodara
,
O.
,
Daramola
,
O. O.
,
Olajide
,
J. L.
,
Adediran
,
A. A.
,
Akintayo
,
O. S.
,
Adewuyi
,
B. O.
,
Desai
,
D. A.
, and
Sadiku
,
E. R
.,
2020
, “
Improved Mechanical and Wear Characteristics of Hypereutectic Aluminium-Silicon Alloy Matrix Composites and Empirical Modelling of the Wear Response
,”
Cogent Eng.
,
7
(
1
)
1787010
.
34.
Chegdani
,
F.
,
Mezghani
,
S.
, and
El Mansori
,
M
.,
2017
, “
Correlation Between Mechanical Scales and Analysis Scales of Topographic Signals Under Milling Process of Natural Fibre Composites
,”
J. Compos. Mater.
,
51
(
19
), pp.
2743
2756
.
35.
Abena
,
A.
,
Soo
,
S. L.
,
Ataya
,
S.
,
Hassanin
,
H.
,
El-Sayed
,
M. A.
,
Ahmadein
,
M.
,
Alsaleh
,
N. A.
,
Ahmed
,
M. M. Z.
, and
Essa
,
K
.,
2023
, “
Chip Formation and Orthogonal Cutting Optimisation of Unidirectional Carbon Fibre Composites
,”
Polymers (Basel)
,
15
(
8
), p.
1897
.
36.
Calzada
,
K. A.
,
Kapoor
,
S. G.
,
Devor
,
R. E.
,
Samuel
,
J.
, and
Srivastava
,
A. K
.,
2012
, “
Modeling and Interpretation of Fiber Orientation-Based Failure Mechanisms in Machining of Carbon Fiber-Reinforced Polymer Composites
,”
J. Manuf. Process.
,
14
(
2
), pp.
141
149
.
37.
Li
,
H.
,
Qin
,
X.
,
He
,
G.
,
Jin
,
Y.
,
Sun
,
D.
, and
Price
,
M
.,
2016
, “
Investigation of Chip Formation and Fracture Toughness in Orthogonal Cutting of UD-CFRP
,”
Int. J. Adv. Manuf. Technol.
,
82
(
5–8
), pp.
1079
1088
.
38.
Cook
,
N. H.
,
Jhaveri
,
P.
, and
Nayak
,
N
.,
1963
, “
The Mechanism of Chip Curl and Its Importance in Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
85
(
4
), pp.
374
380
.
39.
Liu
,
P. D.
,
Hu
,
R. S.
,
Zhang
,
H. T.
, and
Wu
,
X. S
.,
1992
, “
A Study on Chip Curling and Breaking
,”
Proceedings of the Twenty-Ninth International Matador Conference
,
UMIST, Manchester, UK
,
Apr. 6–7
,
J.
Atkinson
,
G.
Barrow
,
M.
Burdekin
,
N. R.
Chitkara
, and
R. G.
Hannam
, eds.,
Macmillan Education UK
,
London
, pp.
507
512
.
40.
Van Schoors
,
L.
,
Cadu
,
T.
,
Moscardelli
,
S.
,
Divet
,
L.
,
Fontaine
,
S.
, and
Sicot
,
O.
,
2021
, “
Why Cyclic Hygrothermal Ageing Modifies the Transverse Mechanical Properties of a Unidirectional Epoxy-Flax Fibres Composite?
,”
Ind. Crops Prod.
,
164
, p.
113341
.
41.
Le Duigou
,
A.
, and
Castro
,
M.
,
2017
, “
Hygromorph BioComposites: Effect of Fibre Content and Interfacial Strength on the Actuation Performances
,”
Ind. Crops Prod.
,
99
, pp.
142
149
.
42.
Le Duigou
,
A.
, and
Castro
,
M.
,
2015
, “
Moisture-Induced Self-Shaping Flax-Reinforced Polypropylene Biocomposite Actuator
,”
Ind. Crops Prod.
,
71
, pp.
1
6
.
43.
Nguyen
,
H. T. H.
,
Qi
,
P.
,
Rostagno
,
M.
,
Feteha
,
A.
, and
Miller
,
S. A
.,
2018
, “
The Quest for High Glass Transition Temperature Bioplastics
,”
J. Mater. Chem. A
,
6
(
20
), pp.
9298
9331
.
44.
Kim
,
K. S.
,
Ando
,
Y.
, and
Kim
,
K. W
.,
2008
, “
The Effect of Temperature on the Nanoscale Adhesion and Friction Behaviors of Thermoplastic Polymer Films
,”
Nanotechnology
,
19
(
10
), p.
105701
.
45.
Nirmal
,
U.
,
Low
,
K. O.
, and
Hashim
,
J
.,
2012
, “
On the Effect of Abrasiveness to Process Equipment Using Betelnut and Glass Fibres Reinforced Polyester Composites
,”
Wear
,
290–291
, pp.
32
40
.
46.
Yousif
,
B. F.
, and
El-Tayeb
,
N. S. M
.,
2008
, “
Adhesive Wear Performance of T-OPRP and UT-OPRP Composites
,”
Tribol. Lett.
,
32
(
3
), pp.
199
208
.
47.
Nirmal
,
U.
,
Hashim
,
J.
, and
Low
,
K. O
.,
2012
, “
Adhesive Wear and Frictional Performance of Bamboo Fibres Reinforced Epoxy Composite
,”
Tribol. Int.
,
47
, pp.
122
133
.
48.
Burgert
,
I.
, and
Fratzl
,
P
.,
2009
, “
Plants Control the Properties and Actuation of Their Organs Through the Orientation of Cellulose Fibrils in Their Cell Walls
,”
Integr. Comp. Biol.
,
49
(
1
), pp.
69
79
.
49.
Eugene Merchant
,
M.
,
1944
, “
Basic Mechanics of the Metal-Cutting Process
,”
ASME J. Appl. Mech.
,
11
(
3
), pp.
A168
A175
.
50.
Brown
,
C. A
.,
2001
, “
Machining of Metals: Fundamentals
,”
Encycl. Mater. Sci. Technol.
, pp.
4703
4708
.
You do not currently have access to this content.