Abstract

Modeling multitrack laser-directed energy deposition (LDED) is different from single-track deposition. There is a temporal variation in the deposition geometry and integrity in a multitrack deposition, which is not well understood. This article employs an analytical model for power attenuation and powder catchment in the melt pool in conjunction with a robust fully coupled metallurgical-thermomechanical finite element (FE) model iteratively to simulate the multitrack deposition. The novel hybrid analytical–numerical approach incorporates the effect of preexisting tracks on melt pool formation, powder catchment, geometry evolution, dilution, residual stress, and defect generation. CPM 9V steel powder was deposited on the H13 tool steel substrate for validating the model. The deposition height is found to be a function of the track sequence but reaches a steady-state height after a finite number of tracks. The height variation determines the waviness of the deposited surface and, therefore, the effective layer height. The inter-track spacing (I) plays a vital role in steady-state height evolution. A larger value of I facilitates faster convergence to the steady-state height but increases the surface waviness. The FE model incorporates the effects of differential thermal contraction, volume dilation, and transformation-induced plasticity. It predicts the deposition geometry and integrity as a function of inter-track spacing and powder feed rate. The insufficient remelting of the substrate or the preceding track can induce defects. A method to predict and mitigate these defects has also been presented in this article.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Nenadl
,
O.
,
Ocelík
,
V.
,
Palavra
,
A.
, and
Hosson
,
J.
,
2014
, “
The Prediction of Coating Geometry From Main Processing Parameters in Laser Cladding
,”
Phys. Procedia
,
56
, pp.
220
227
.
2.
Shen
,
C.
,
Li
,
C.
,
Guo
,
Y.
,
Liu
,
C.
,
Zhang
,
X.
, and
Feng
,
X.
,
2021
, “
Modeling of Temperature Distribution and Clad Geometry of the Molten Pool During Laser Cladding of TiAlSi Alloys
,”
Opt. Laser Technol.
,
142
, p.
107277
.
3.
Nazemi
,
N.
,
Urbanic
,
J.
, and
Alam
,
M.
,
2017
, “
Hardness and Residual Stress Modeling of Powder Injection Laser Cladding of P420 Coating on AISI 1018 Substrate
,”
Int. J. Adv. Manuf. Technol.
,
93
(
9
), pp.
3485
3503
.
4.
Ya
,
W.
,
Pathiraj
,
B.
, and
Liu
,
S.
,
2016
, “
2D Modeling of Clad Geometry and Resulting Thermal Cycles During Laser Cladding
,”
J. Mater. Process. Technol.
,
230
, pp.
217
232
.
5.
Farahmand
,
P.
, and
Kovacevic
,
R.
,
2014
, “
An Experimental–Numerical Investigation of Heat Distribution and Stress Field in Single- and Multi-Track Laser Cladding by a High-Power Direct Diode Laser
,”
Opt. Laser Technol.
,
63
, pp.
154
168
.
6.
El Cheikh
,
H.
,
Courant
,
B.
,
Branchu
,
S.
,
Hascoët
,
J. Y.
, and
Guillén
,
R.
,
2012
, “
Analysis and Prediction of Single Laser Tracks Geometrical Characteristics in Coaxial Laser Cladding Process
,”
Opt. Lasers Eng.
,
50
(
3
), pp.
413
422
.
7.
Walker
,
T. R.
,
Bennett
,
C. J.
,
Lee
,
T. L.
, and
Clare
,
A. T.
,
2019
, “
A Validated Analytical-Numerical Modelling Strategy to Predict Residual Stresses in Single-Track Laser Deposited IN718
,”
Int. J. Mech. Sci.
,
151
, pp.
609
621
.
8.
Wirth
,
F.
, and
Wegener
,
K.
,
2018
, “
A Physical Modeling and Predictive Simulation of the Laser Cladding Process
,”
Addit. Manuf.
,
22
, pp.
307
319
.
9.
Fan
,
P.
, and
Zhang
,
G.
,
2020
, “
Study on Process Optimization of WC-Co50 Cermet Composite Coating by Laser Cladding
,”
Int. J. Refract. Hard Met.
,
87
, p.
105133
.
10.
Li
,
X.
,
Li
,
T.
,
Shi
,
B.
,
Wang
,
D.
,
Adnan
,
M.
, and
Lu
,
H.
,
2020
, “
The Influence of Substrate Tilt Angle on the Morphology of Laser Cladding Layer
,”
Surf. Coat. Technol.
,
391
, p.
125706
.
11.
Tabernero
,
I.
,
Lamikiz
,
A.
,
Ukar
,
E.
,
López de Lacalle
,
L. N.
,
Angulo
,
C.
, and
Urbikain
,
G.
,
2010
, “
Numerical Simulation and Experimental Validation of Powder Flux Distribution in Coaxial Laser Cladding
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2125
2134
.
12.
Yang
,
N.
,
2009
, “
Concentration Model Based on Movement Model of Powder Flow in Coaxial Laser Cladding
,”
Opt. Laser Technol.
,
41
(
1
), pp.
94
98
.
13.
Liu
,
D.
,
Wang
,
S.
, and
Yan
,
W.
,
2020
, “
Grain Structure Evolution in Transition-Mode Melting in Direct Energy Deposition
,”
Mater. Des.
,
194
, p.
108919
.
14.
Liu
,
F. Q.
,
Wei
,
L.
,
Shi
,
S. Q.
, and
Wei
,
H. L.
,
2020
, “
On the Varieties of Build Features During Multi-Layer Laser Directed Energy Deposition
,”
Addit. Manuf.
,
36
, p.
101491
.
15.
Guan
,
X.
, and
Zhao
,
Y. F.
,
2020
, “
Modeling of the Laser Powder–Based Directed Energy Deposition Process for Additive Manufacturing: a Review
,”
Int. J. Adv. Manuf. Technol.
,
107
(
5–6
), pp.
1959
1982
.
16.
Liu
,
P.
,
Wang
,
Z.
,
Xiao
,
Y.
,
Horstemeyer
,
M. F.
,
Cui
,
X.
, and
Chen
,
L.
,
2019
, “
Insight Into the Mechanisms of Columnar to Equiaxed Grain Transition During Metallic Additive Manufacturing
,”
Addit. Manuf.
,
26
, pp.
22
29
.
17.
Qiu
,
C.
,
Ravi
,
G. A.
,
Dance
,
C.
,
Ranson
,
A.
,
Dilworth
,
S.
, and
Attallah
,
M. M.
,
2015
, “
Fabrication of Large Ti–6Al–4V Structures by Direct Laser Deposition
,”
J. Alloys Compd.
,
629
, pp.
351
361
.
18.
Mazumder
,
J.
, and
Steen
,
W. M.
,
1980
, “
Heat Transfer Model for CW Laser Material Processing
,”
J. Appl. Phys.
,
51
(
2
), pp.
941
947
.
19.
Toyserkani
,
E.
,
Khajepour
,
A.
, and
Corbin
,
S. F.
,
2004
, “
3-D Finite Element Modeling of Laser Cladding by Powder Injection:Effects of Powder Feed Rate and Travel Speed on the Process
,”
Opt. Lasers Eng.
,
41
(
6
), pp.
849
867
.
20.
Brucker
,
F.
,
Lepski
,
D.
, and
Beyer
,
E.
,
2007
, “
Modeling the Influence of Process Properties and Additional Heat Sources on Residual Stresses in Laser Cladding
,”
J. Therm. Spray Technol.
,
16
(
3
), pp.
355
373
.
21.
Bax
,
B.
,
Rajput
,
R.
,
Kellet
,
R.
, and
Reisacher
,
M.
,
2018
, “
Systematic Evaluation of Process Parameter Maps for Laser Cladding and Directed Energy Deposition
,”
Addit. Manuf.
,
21
, pp.
487
494
.
22.
Svetlizky
,
D.
,
Zheng
,
B.
,
Vyatskikh
,
A.
,
Das
,
M.
,
Bose
,
S.
,
Bandyopadhyay
,
A.
,
Schoenung
,
J. M.
,
Lavernia
,
E. J.
, and
Eliaz
,
N.
,
2022
, “
Laser-Based Directed Energy Deposition (DED-LB) of Advanced Materials
,”
Mater. Sci. Eng. A
,
840
, p.
142967
.
23.
Lia
,
F.
,
Park
,
J.
,
Tressler
,
J.
, and
Martukanitz
,
R.
,
2017
, “
Partitioning of Laser Energy During Directed Energy Deposition
,”
Addit. Manuf.
,
18
, pp.
31
39
.
24.
Tamanna
,
N.
,
Crouch
,
R.
,
Kabir
,
I. R.
, and
Naher
,
S.
,
2018
, “
An Analytical Model to Predict and Minimize the Residual Stress of Laser Cladding Process
,”
Appl. Phys. A
,
124
(
2
), pp.
1
5
.
25.
Kaplan
,
A. F. G.
, and
Groboth
,
G.
,
2001
, “
Process Analysis of Laser Beam Cladding
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
609
614
.
26.
Gao
,
J.
,
Wu
,
C.
,
Hao
,
Y.
,
Xu
,
X.
, and
Guo
,
L.
,
2020
, “
Numerical Simulation and Experimental Investigation on Three-Dimensional Modelling of Single-Track Geometry and Temperature Evolution by Laser Cladding
,”
Opt. Laser Technol.
,
129
, p.
106287
.
27.
Huang
,
Y.
,
Khamesee
,
M. B.
, and
Toyserkani
,
E.
,
2016
, “
A Comprehensive Analytical Model for Laser Powder-Fed Additive Manufacturing
,”
Addit. Manuf.
,
12
, pp.
90
99
.
28.
Tan
,
H.
,
Chen
,
J.
,
Zhang
,
F.
,
Lin
,
X.
, and
Huang
,
W.
,
2010
, “
Estimation of Laser Solid Forming Process Based on Temperature Measurement
,”
Opt. Laser Technol.
,
42
(
1
), pp.
47
54
.
29.
Sun
,
Z.
,
Guo
,
W.
, and
Li
,
L.
,
2020
, “
Numerical Modelling of Heat Transfer, Mass Transport and Microstructure Formation in a High Deposition Rate Laser Directed Energy Deposition Process
,”
Addit. Manuf.
,
33
, p.
101175
.
30.
Zhang
,
Z.
, and
Kovacevic
,
R.
,
2019
, “
A Thermo-Mechanical Model for Simulating the Temperature and Stress Distribution During Laser Cladding Process
,”
Int. J. Adv. Manuf. Technol.
,
102
(
1
), pp.
457
472
.
31.
Wang
,
Q.
,
Li
,
J.
,
Gouge
,
M.
,
Nassar
,
A. R.
, and
Reutzel
,
E. W.
,
2017
, “
Physics-Based Multivariable Modeling and Feedback Linearization Control of Melt-Pool Geometry and Temperature in Directed Energy Deposition
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021013
.
32.
Zhang
,
Z.
,
Tan
,
Z. J.
,
Yao
,
X. X.
,
Hu
,
C. P.
,
Ge
,
P.
,
Wan
,
Z. Y.
,
Li
,
J. Y.
, and
Wu
,
Q.
,
2019
, “
Numerical Methods for Microstructural Evolutions in Laser Additive Manufacturing
,”
Comput. Math. Appl.
,
78
(
7
), pp.
2296
2307
.
33.
Sawant
,
M. S.
,
Jain
,
N. K.
, and
Nikam
,
S. H.
,
2019
, “
Theoretical Modeling and Finite Element Simulation of Dilution in Micro-Plasma Transferred Arc Additive Manufacturing of Metallic Materials
,”
Int. J. Mech. Sci.
,
164
, p.
105166
.
34.
Peng
,
K.
,
Huang
,
H.
,
Xu
,
H.
,
Kong
,
Y.
,
Zhu
,
L.
, and
Liu
,
Z.
,
2022
, “
A Molecular Dynamics Study of Laser Melting of Densely Packed Stainless Steel Powders
,”
Int. J. Mech. Sci.
,
243
, p.
108034
.
35.
Yao
,
X. X.
,
Li
,
J. Y.
,
Wang
,
Y. F.
,
Gao
,
X.
,
Li
,
T.
, and
Zhang
,
Z.
,
2021
, “
Experimental and Numerical Studies of Nozzle Effect on Powder Flow Behaviors in Directed Energy Deposition Additive Manufacturing
,”
Int. J. Mech. Sci.
,
210
, p.
106740
.
36.
Song
,
B.
,
Yu
,
T.
,
Jiang
,
X.
,
Xi
,
W.
, and
Lin
,
X.
,
2020
, “
The Relationship Between Convection Mechanism and Solidification Structure of the Iron-Based Molten Pool in Metal Laser Direct Deposition
,”
Int. J. Mech. Sci.
,
165
, p.
105207
.
37.
Zekovic
,
S.
,
Dwivedi
,
R.
, and
Kovacevic
,
R.
,
2007
, “
Numerical Simulation and Experimental Investigation of Gas–Powder Flow From Radially Symmetrical Nozzles in Laser-Based Direct Metal Deposition
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
112
123
.
38.
Guan
,
X.
, and
Zhao
,
Y. F.
,
2020
, “
Numerical Modeling of Coaxial Powder Stream in Laser-Powder-Based Directed Energy Deposition Process
,”
Addit. Manuf.
,
34
, p.
101226
.
39.
Alya S
,
S.
, and
Singh
,
R.
,
2021
, “
Discrete Phase Modeling of the Powder Flow Dynamics and the Catchment Efficiency in Laser Directed Energy Deposition With Inclined Coaxial Nozzles
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p.
081004
.
40.
Lu
,
X.
,
Lin
,
X.
,
Chiumenti
,
M.
,
Cervera
,
M.
,
Hu
,
Y.
,
Ji
,
X.
,
Ma
,
L.
, and
Huang
,
W.
,
2019
, “
In Situ Measurements and Thermo-Mechanical Simulation of Ti–6Al–4V Laser Solid Forming Processes
,”
Int. J. Mech. Sci.
,
153
, pp.
119
130
.
41.
Masoomi
,
M.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2017
, “
Laser Powder Bed Fusion of Ti-6Al-4V Parts: Thermal Modeling and Mechanical Implications
,”
Int. J. Mach. Tools Manuf.
,
118
, pp.
73
90
.
42.
Shin
,
Y. C.
,
Bailey
,
N.
,
Katinas
,
C.
, and
Tan
,
W.
,
2018
, “
Predictive Modeling Capabilities From Incident Powder and Laser to Mechanical Properties for Laser Directed Energy Deposition
,”
Comput. Mech.
,
61
(
5
), pp.
617
636
.
43.
Li
,
W.
, and
Soshi
,
M.
,
2019
, “
Modeling Analysis of Grain Morphologies in Directed Energy Deposition (DED) Coating With Different Laser Scanning Patterns
,”
Mater. Lett.
,
251
, pp.
8
12
.
44.
Lu
,
X.
,
Cervera
,
M.
,
Chiumenti
,
M.
,
Li
,
J.
,
Ji
,
X.
,
Zhang
,
G.
, and
Lin
,
X.
,
2020
, “
Modeling of the Effect of the Building Strategy on the Thermomechanical Response of Ti-6Al-4V Rectangular Parts Manufactured by Laser Directed Energy Deposition
,”
Metals
,
10
(
12
), p.
1643
.
45.
Wu
,
J.
,
Zheng
,
X.
,
Zhang
,
Y.
,
Ren
,
S.
,
Yin
,
C.
,
Cao
,
Y.
, and
Zhang
,
D.
,
2022
, “
Modeling of Whole-Phase Heat Transport in Laser-Based Directed Energy Deposition With Multichannel Coaxial Powder Feeding
,”
Addit. Manuf.
,
59
, p.
103161
.
46.
Piscopo
,
G.
,
Atzeni
,
E.
, and
Salmi
,
A.
,
2019
, “
A Hybrid Modeling of the Physics-Driven Evolution of Material Addition and Track Generation in Laser Powder Directed Energy Deposition
,”
Materials
,
12
(
17
), p.
2819
.
47.
Haley
,
J. C.
,
Schoenung
,
J. M.
, and
Lavernia
,
E. J.
,
2019
, “
Modelling Particle Impact on the Melt Pool and Wettability Effects in Laser Directed Energy Deposition Additive Manufacturing
,”
Mater. Sci. Eng. A
,
761
, p.
138052
.
48.
Li
,
C.
,
Yu
,
Z.
,
Gao
,
J.
,
Zhao
,
J.
, and
Han
,
X.
,
2019
, “
Numerical Simulation and Experimental Study of Cladding Fe60 on an ASTM 1045 Substrate by Laser Cladding
,”
Surf. Coat. Technol.
,
357
, pp.
965
977
.
49.
Chen
,
C.
,
Lian
,
G.
,
Jiang
,
J.
, and
Wang
,
Q.
,
2018
, “
Simplification and Experimental Investigation of Geometrical Surface Smoothness Model for Multi-Track Laser Cladding Processes
,”
J. Manuf. Process.
,
36
, pp.
621
628
.
50.
Lian
,
G.
,
Zhang
,
H.
,
Zhang
,
Y.
,
Chen
,
C.
,
Huang
,
X.
, and
Jiang
,
J.
,
2020
, “
Control and Prediction of Forming Quality in Curved Surface Multi-Track Laser Cladding With Curve Paths
,”
Int. J. Adv. Manuf. Technol.
,
106
(
9
), pp.
3669
3682
.
51.
Wang
,
Q. Y.
,
Pei
,
R.
,
Liu
,
S.
,
Wang
,
S.-L.
,
Dong
,
L.-J.
,
Zhou
,
L.-J.
,
Xi
,
Y.-C.
, and
Bai
,
S.-L.
,
2020
, “
Microstructure and Corrosion Behavior of Different Clad Zones in Multi-Track Ni-Based Laser-Clad Coating
,”
Surf. Coat. Technol.
,
402
, p.
126310
.
52.
Li
,
J.
,
Li
,
H.
,
Liao
,
Z.
, and
Axinte
,
D.
,
2022
, “
Overlapped Wire-Fed Laser Cladding on Inclined Surfaces: An Analytical Model Considering Gravity and a Model Application
,”
J. Mater. Process. Technol.
,
304
, p.
117559
.
53.
Huang
,
Y.
,
Khamesee
,
M. B.
, and
Toyserkani
,
E.
,
2019
, “
A New Physics-Based Model for Laser Directed Energy Deposition (Powder-Fed Additive Manufacturing): From Single-Track to Multi-Track and Multi-Layer
,”
Opt. Laser Technol.
,
109
, pp.
584
599
.
54.
Ansari
,
M.
,
Martinez-Marchese
,
A.
,
Khamooshi
,
M.
,
Keshavarzkermani
,
A.
,
Esmaeilizadeh
,
R.
, and
Toyserkani
,
E.
,
2022
, “
Analytical Modeling of Multi-Track Powder-Fed Laser Directed Energy Deposition: On the Relationships Among Process, Deposition Dimensions, and Solidification Microstructure in Additively Manufactured Near-β Titanium Alloy
,”
J. Mater. Process. Technol.
,
306
, p.
117643
.
55.
Liu
,
S.
, and
Shin
,
Y. C.
,
2020
, “
Prediction of 3D Microstructure and Phase Distributions of Ti6Al4V Built by the Directed Energy Deposition Process via Combined Multi-Physics Models
,”
Addit. Manuf.
,
34
, p.
101234
.
56.
Caiazzo
,
F.
, and
Alfieri
,
V.
,
2019
, “
Simulation of Laser-Assisted Directed Energy Deposition of Aluminum Powder: Prediction of Geometry and Temperature Evolution
,”
Materials
,
12
(
13
), p.
2100
.
57.
Cui
,
Z.
,
Hu
,
X.
,
Dong
,
S.
,
Yan
,
S.
, and
Zhao
,
X.
,
2020
, “
Numerical Simulation and Experimental Study on Residual Stress in the Curved Surface Forming of 12CrNi2 Alloy Steel by Laser Melting Deposition
,”
Materials
,
13
(
19
), p.
4316
.
58.
Du
,
L.
,
Gu
,
D.
,
Dai
,
D.
,
Shi
,
Q.
,
Ma
,
C.
, and
Xia
,
M.
,
2018
, “
Relation of Thermal Behavior and Microstructure Evolution During Multi-Track Laser Melting Deposition of Ni-Based Material
,”
Opt. Laser Technol.
,
108
, pp.
207
217
.
59.
Vundru
,
C.
,
Singh
,
R.
,
Yan
,
W.
, and
Karagadde
,
S.
,
2021
, “
A Comprehensive Analytical-Computational Model of Laser Directed Energy Deposition to Predict Deposition Geometry and Integrity for Sustainable Repair
,”
Int. J. Mech. Sci.
,
211
, p.
106790
.
60.
Prasad
,
H. S.
,
Brueckner
,
F.
, and
Kaplan
,
A. F. H.
,
2019
, “
Powder Catchment in Laser Metal Deposition
,”
J. Laser Appl.
,
31
(
2
), p.
022308
.
61.
Fallah
,
V.
,
Alimardani
,
M.
,
Corbin
,
S. F.
, and
Khajepour
,
A.
,
2011
, “
Temporal Development of Melt-Pool Morphology and Clad Geometry in Laser Powder Deposition
,”
Comput. Mater. Sci.
,
50
(
7
), pp.
2124
2134
.
62.
Kaplan
,
A.
,
2009
, “Keyhole Welding: The Solid and Liquid Phases,”
The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology
,
J.
Dowden
, ed.,
Springer Netherlands
,
Dordrecht
, pp.
71
93
.
63.
Lampa
,
C.
,
Kaplan
,
A. F. H.
,
Powell
,
J.
, and
Magnusson
,
C.
,
1997
, “
An Analytical Thermodynamic Model of Laser Welding
,”
J. Phys. D: Appl. Phys.
,
30
(
9
), pp.
1293
1299
.
64.
Prasad
,
H. S.
,
Brueckner
,
F.
, and
Kaplan
,
A. F. H.
,
2020
, “
Powder Incorporation and Spatter Formation in High Deposition Rate Blown Powder Directed Energy Deposition
,”
Addit. Manuf.
,
35
, p.
101413
.
65.
Brückner
,
F.
, and
Lepski
,
D.
,
2017
, “Laser Cladding,”
The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology
,
J.
Dowden
, and
W.
Schulz
, eds.,
Springer International Publishing
,
Cham
, pp.
263
306
.
66.
Tseng
,
W. C.
, and
Aoh
,
J. N.
,
2013
, “
Simulation Study on Laser Cladding on Preplaced Powder Layer With a Tailored Laser Heat Source
,”
Opt. Laser Technol.
,
48
, pp.
141
152
.
67.
Lin
,
J.
,
1999
, “
A Simple Model of Powder Catchment in Coaxial Laser Cladding
,”
Opt. Laser Technol.
,
31
(
3
), pp.
233
238
.
68.
Vundru
,
C.
,
Singh
,
R.
,
Yan
,
W.
, and
Karagadde
,
S.
,
2020
, “
The Effect of Martensitic Transformation on the Evolution of Residual Stresses and Identification of the Critical Linear Mass Density in Direct Laser Metal Deposition–Based Repair
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071002
.
69.
Harris
,
J. W.
, and
Stöcker
,
H.
,
1998
,
Handbook of Mathematics and Computational Science
,
Springer-Verlag
,
New York
.
70.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
71.
Mirkoohi
,
E.
,
Sievers
,
D. E.
,
Garmestani
,
H.
, and
Liang
,
S. Y.
,
2020
, “
Thermo-Mechanical Modeling of Thermal Stress in Metal Additive Manufacturing Considering Elastoplastic Hardening
,”
CIRP J. Manuf. Sci. Technol.
,
28
, pp.
52
67
.
72.
Mirkoohi
,
E.
,
Tran
,
H. C.
,
Lo
,
Y. L.
,
Chang
,
Y. C.
,
Lin
,
H. Y.
, and
Liang
,
S. Y.
,
2020
, “
Analytical Mechanics Modeling of Residual Stress in Laser Powder Bed Considering Flow Hardening and Softening
,”
Int. J. Adv. Manuf. Technol.
,
107
(
9–10
), pp.
4159
4172
.
73.
Koistinen
,
D. P.
, and
Marburger
,
R. E.
,
1959
, “
A General Equation Prescribing the Extent of the Austenite-Martensite Transformation in Pure Iron-Carbon Alloys and Plain Carbon Steels
,”
Acta Metall.
,
7
(
1
), pp.
59
60
.
74.
Ramesh
,
A.
, and
Melkote
,
S. N.
,
2008
, “
Modeling of White Layer Formation Under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
402
414
.
75.
Payares-Asprino
,
M. C.
,
Katsumoto
,
H.
, and
Liu
,
S.
,
2008
, “
Effect of Martensite Start and Finish Temperature on Residual Stress Development in Structural Steel Welds
,”
Weld. J.
,
87
, pp.
279
289
.
76.
Moyer
,
J. M.
, and
Ansell
,
G. S.
,
1975
, “
The Volume Expansion Accompanying the Martensite Transformation in Iron-Carbon Alloys
,”
Metall. Trans. A
,
6
(
9
), pp.
1785
1791
.
77.
Inoue
,
T.
,
2008
, “
Phenomenological Mechanism of Transformation Plasticity and the Constitutive Law Coupled With Thermo-Mechanical Plasticity
,”
Adv. Mater. Res.
,
33
, pp.
1351
1358
.
78.
Leblond
,
J. B.
,
Devaux
,
J.
, and
Devaux
,
J. C.
,
1989
, “
Mathematical Modelling of Transformation Plasticity in Steels I: Case of Ideal-Plastic Phases
,”
Int. J. Plast.
,
5
(
6
), pp.
551
572
.
79.
Dunne
,
F.
, and
Petrinic
,
N.
,
2005
,
Introduction to Computational Plasticity
,
Oxford University Press
,
Oxford, UK
.
80.
Deng
,
D.
,
2009
, “
FEM Prediction of Welding Residual Stress and Distortion in Carbon Steel Considering Phase Transformation Effects
,”
Mater. Des.
,
30
(
2
), pp.
359
366
.
81.
Paul
,
S.
,
Singh
,
R.
,
Yan
,
W.
,
Samajdar
,
I.
,
Paradowska
,
A.
,
Thool
,
K.
, and
Reid
,
M.
,
2018
, “
Critical Deposition Height for Sustainable Restoration via Laser Additive Manufacturing
,”
Sci. Rep.
,
8
(
1
), pp.
1
8
.
82.
Kattire
,
P.
,
Paul
,
S.
,
Singh
,
R.
, and
Yan
,
W.
,
2015
, “
Experimental Characterization of Laser Cladding of CPM 9V on H13 Tool Steel for Die Repair Applications
,”
J. Manuf. Processes
,
20
, pp.
492
499
.
83.
Xue
,
L.
,
Chen
,
J.
, and
Wang
,
S.-H.
,
2013
, “
Freeform Laser Consolidated H13 and CPM 9V Tool Steels
,”
Metallogr., Microstruct., Anal.
,
2
, pp.
67
78
.
84.
Paul
,
S.
,
Thool
,
K.
,
Singh
,
R.
,
Samajdar
,
I.
, and
Yan
,
W.
,
2017
, “
Experimental Characterization of Clad Microstructure and Its Correlation With Residual Stresses
,”
Procedia Manuf.
,
10
, pp.
804
818
.
85.
Zhang
,
Q.
,
Xie
,
J.
,
Gao
,
Z.
,
London
,
T.
,
Griffiths
,
D.
, and
Oancea
,
V.
,
2019
, “
A Metallurgical Phase Transformation Framework Applied to SLM Additive Manufacturing Processes
,”
Mater. Des.
,
166
, p.
107618
.
86.
Pina
,
J.
,
Dias
,
A.
, and
Lebrun
,
J. L.
,
2003
, “
Study by X-Ray Diffraction and Mechanical Analysis of the Residual Stress Generation During Thermal Spraying
,”
Mater. Sci. Eng., A.
,
347
(
1–2
), pp.
21
31
.
87.
Greving
,
D. J.
,
Rybicki
,
E. F.
, and
Shadley
,
J. R.
,
1994
, “
Through-Thickness Residual Stress Evaluations for Several Industrial Thermal Spray Coatings Using a Modified Layer-Removal Method
,”
J. Therm. Spray Technol.
,
3
(
4
), pp.
379
388
.
88.
Lee
,
E.-S.
,
2000
, “
Machining Characteristics of the Electropolishing of Stainless Steel (STS316L), International
,”
J. Adv. Manuf. Technol.
,
16
(
8
), pp.
591
599
.
89.
Bauccio
,
M.
,
1993
,
ASM Metals Reference
,
ASM international
,
Materials Park, OH, USA
.
90.
Moore
,
M. G.
, and
Evans
,
W. P.
,
1958
, “
Mathematical Correction for Stress in Removed Layers in X-ray Diffraction Residual Stress Analysis
,”
SAE Trans.
,
66
, pp.
340
345
.
91.
Ghosh
,
G.
,
Sidpara
,
A.
, and
Bandyopadhyay
,
P. P.
,
2019
, “
Understanding the Role of Surface Roughness on the Tribological Performance and Corrosion Resistance of WC-Co Coating
,”
Surf. Coat. Technol.
,
378
, p.
125080
.
92.
Lodh
,
A.
,
Tak
,
T. N.
,
Prakash
,
A.
,
Guruprasad
,
P. J.
,
Hutchinson
,
C.
, and
Samajdar
,
I.
,
2017
, “
Relating Residual Stress and Substructural Evolution During Tensile Deformation of an Aluminum-Manganese Alloy
,”
Metall. Mater. Trans. A
,
48
(
11
), pp.
5317
5331
.
93.
Chen
,
J. Y.
,
Wang
,
S. H.
, and
Xue
,
L.
,
2004
, “
Microstructure and Process Induced Residual Stresses of Laser Clad CPM-9V and CPM-10V Tool Steels
,”
Proceedings of the 3rd International Surface Engineering Congress
,
Orlando, FL
,
Aug. 2–4
.
94.
Wang
,
S. H.
,
Chen
,
J. Y.
, and
Xue
,
L.
,
2006
, “
A Study of the Abrasive Wear Behaviour of Laser-Clad Tool Steel Coatings
,”
Surf. Coat. Technol.
,
200
(
11
), pp.
3446
3345
.
You do not currently have access to this content.