Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In laser powder bed fusion (LPBF) technology, approximately 20–30% of powder feedstock is stored after multiple cycles of sieving and reclaiming due to the deviation from standard particle geometry and size distribution. At present, there are no feasible ways to recycle these out-of-spec powders and they are being stored. This leads to storage-related issues and increases safety risks in manufacturing facilities. Here, we introduce an energy-efficient method to consolidate this hazardous metal waste into filament feedstock for repurposing without melting. In general, traditional production of wire feedstock is predominantly done using energy-intensive thermal melt-cast processes followed by mechanical drawing. The proposed technology compresses the multi-step process flow into a single-step technique of discrete-phase raw material consolidation and shaping into wire feedstocks using acoustic energy. This can bring about significant energy and cost savings in feedstock production and create a new route for reclaiming and repurposing of discrete-phase metal materials in production processes such as LPBF. In this work, we investigated the feasibility of utilizing low processing temperatures and power ultrasonics to consolidate out-of-spec metal powders. The effect of processing temperature and time on the porosity and microstructure of the consolidated samples has been studied. The results from this study will help us to develop a semi-continuous roll-forming technology to produce wire feedstocks for direct use in other additive manufacturing processes such as direct energy deposition or wire arc additive manufacturing.

References

1.
Bhavar
,
V.
,
Kattire
,
P.
,
Patil
,
V.
,
Khot
,
S.
,
Gujar
,
K.
, and
Singh
,
R.
,
2017
, “A Review on Powder Bed Fusion Technology of Metal Additive Manufacturing,”
Additive Manufacturing Handbook
,
A. B.
Badiru
,
V. V.
Valencia
,
A. B.
Badiru
,
D.
Liu
, and
C. R.
Hartsfield
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
251
253
.
2.
Atzeni
,
E.
, and
Salmi
,
A.
,
2012
, “
Economics of Additive Manufacturing for End-Usable Metal Parts
,”
Int. J. Adv. Manuf. Technol.
,
62
(
9–12
), pp.
1147
1155
.
3.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
4.
Hann
,
B. A.
,
2016
, “
Powder Reuse and Its Effects on Laser Based Powder Fusion Additive Manufactured Alloy 718
,”
SAE Int. J. Aerosp.
,
9
(
2016-01-2071
), pp.
209
213
.
5.
Jacob
,
G.
,
Jacob
,
G.
,
Brown
,
C. U.
,
Donmez
,
M. A.
,
Watson
,
S. S.
, and
Slotwinski
,
J.
,
2017
,
Effects of Powder Recycling on Stainless Steel Powder and Built Material Properties in Metal Powder Bed Fusion Processes
,
US Department of Commerce, National Institute of Standards and Technology
,
Gaithersburg, MD
.
6.
Carrion
,
P. E.
,
Soltani-Tehrani
,
A.
,
Phan
,
N.
, and
Shamsaei
,
N.
,
2019
, “
Powder Recycling Effects on the Tensile and Fatigue Behavior of Additively Manufactured Ti-6Al-4V Parts
,”
JOM
,
71
(
3
), pp.
963
973
.
7.
Powell
,
D.
,
Rennie
,
A. E.
,
Geekie
,
L.
, and
Burns
,
N.
,
2020
, “
Understanding Powder Degradation in Metal Additive Manufacturing to Allow the Upcycling of Recycled Powders
,”
J. Clean. Prod.
,
268
, p.
122077
.
8.
Oros Daraban
,
A. E.
,
Negrea
,
C. S.
,
Artimon
,
F. G.
,
Angelescu
,
D.
,
Popan
,
G.
,
Gheorghe
,
S. I.
, and
Gheorghe
,
M.
,
2019
, “
A Deep Look at Metal Additive Manufacturing Recycling and Use Tools for Sustainability Performance
,”
Sustainability
,
11
(
19
), p.
5494
.
9.
Moghimian
,
P.
,
Poirié
,
T.
,
Habibnejad-Korayem
,
M.
,
Zavala
,
J. A.
,
Kroeger
,
J.
,
Marion
,
F.
, and
Larouche
,
F.
,
2021
, “
Metal Powders in Additive Manufacturing: A Review on Reusability and Recyclability of Common Titanium, Nickel and Aluminum Alloys
,”
Addit. Manuf.
,
43
, p.
102017
.
10.
He
,
X.
,
Kong
,
D.
,
Zhou
,
Y.
,
Wang
,
L.
,
Ni
,
X.
,
Zhang
,
L.
,
Wu
,
W.
,
Li
,
R.
,
Li
,
X.
, and
Dong
,
C.
,
2022
, “
Powder Recycling Effects on Porosity Development and Mechanical Properties of Hastelloy X Alloy During Laser Powder Bed Fusion Process
,”
Addit. Manuf.
,
55
, p.
102840
.
11.
Cunningham
,
R.
,
Nicolas
,
A.
,
Madsen
,
J.
,
Fodran
,
E.
,
Anagnostou
,
E.
,
Sangid
,
M. D.
, and
Rollett
,
A. D.
,
2017
, “
Analyzing the Effects of Powder and Post-Processing on Porosity and Properties of Electron Beam Melted Ti-6Al-4V
,”
Mater. Res. Lett.
,
5
(
7
), pp.
516
525
.
12.
Ardila
,
L.
,
Garciandia
,
F.
,
González-Díaz
,
J.
,
Álvarez
,
P.
,
Echeverria
,
A.
,
Petite
,
M.
,
Deffley
,
R.
, and
Ochoa
,
J.
,
2014
, “
Effect of IN718 Recycled Powder Reuse on Properties of Parts Manufactured by Means of Selective Laser Melting
,”
Phys. Procedia
,
56
, pp.
99
107
.
13.
Santecchia
,
E.
,
Spigarelli
,
S.
, and
Cabibbo
,
M.
,
2020
, “
Material Reuse in Laser Powder Bed Fusion: Side Effects of the Laser – Metal Powder Interaction
,”
Metals
,
10
(
3
), p.
341
.
14.
Thompson
,
S. M.
, and
Crane
,
N. B.
,
2023
, Process Defects in Metal Additive Manufacturing.
15.
Carroll
,
P.
,
Pinkerton
,
A.
,
Allen
,
J.
,
Syed
,
W.
,
Sezer
,
H.
,
Brown
,
P.
,
Ng
,
G.
,
Scudamore
,
R.
, and
Li
,
L.
,
2006
, The Effect of Powder Recycling in Direct Metal Laser Deposition on Powder and Manufactured Part Characteristics.
16.
Szost
,
B.
,
Wang
,
X.
,
Johns
,
D.
,
Sharma
,
S.
,
Clare
,
A.
, and
Ashcroft
,
I.
,
2018
, “
Spatter and Oxide Formation in Laser Powder Bed Fusion of Inconel 718
,”
Addit. Manuf.
,
24
, pp.
446
456
.
17.
Jacobson
,
M.
,
Cooper
,
A. R.
, and
Nagy
,
J.
,
1964
,
Explosibility of Metal Powders
,
US Department of the Interior, Bureau of Mines
,
Washington, DC
.
18.
Boilard
,
S. P.
,
Amyotte
,
P. R.
,
Khan
,
F. I.
,
Dastidar
,
A. G.
, and
Eckhoff
,
R. K.
,
2013
, “
Explosibility of Micron-and Nano-Size Titanium Powders
,”
J. Loss Prev. Process Ind.
,
26
(
6
), pp.
1646
1654
.
19.
Chen
,
R.
,
Yin
,
H.
,
Cole
,
I. S.
,
Shen
,
S.
,
Zhou
,
X.
,
Wang
,
Y.
, and
Tang
,
S.
,
2020
, “
Exposure, Assessment and Health Hazards of Particulate Matter in Metal Additive Manufacturing: A Review
,”
Chemosphere
,
259
, p.
127452
.
20.
Ghods
,
S.
,
Schultz
,
E.
,
Wisdom
,
C.
,
Schur
,
R.
,
Pahuja
,
R.
,
Montelione
,
A.
,
Arola
,
D.
, and
Ramulu
,
M.
,
2020
, “
Electron Beam Additive Manufacturing of Ti6Al4V: Evolution of Powder Morphology and Part Microstructure With Powder Reuse
,”
Materialia
,
9
, p.
100631
.
21.
Tang
,
H.
,
Qian
,
M.
,
Liu
,
N.
,
Zhang
,
X.
,
Yang
,
G.
, and
Wang
,
J.
,
2015
, “
Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting
,”
JOM
,
67
(
3
), pp.
555
563
.
22.
Cordova
,
L.
,
Campos
,
M.
, and
Tinga
,
T.
,
2019
, “
Revealing the Effects of Powder Reuse for Selective Laser Melting by Powder Characterization
,”
JOM
,
71
(
3
), pp.
1062
1072
.
23.
Nandwana
,
P.
,
Peter
,
W. H.
,
Dehoff
,
R. R.
,
Lowe
,
L. E.
,
Kirka
,
M. M.
,
Medina
,
F.
, and
Babu
,
S. S.
,
2016
, “
Recyclability Study on Inconel 718 and Ti-6Al-4V Powders for Use in Electron Beam Melting
,”
Metall. Mater. Trans. B
,
47
(
1
), pp.
754
762
.
24.
Maamoun
,
A. H.
,
Elbestawi
,
M.
,
Dosbaeva
,
G. K.
, and
Veldhuis
,
S. C.
,
2018
, “
Thermal Post-Processing of AlSi10Mg Parts Produced by Selective Laser Melting Using Recycled Powder
,”
Addit. Manuf.
,
21
, pp.
234
247
.
25.
Raza
,
A.
,
Fiegl
,
T.
,
Hanif
,
I.
,
MarkstrÖm
,
A.
,
Franke
,
M.
,
Körner
,
C.
, and
Hryha
,
E.
,
2021
, “
Degradation of AlSi10Mg Powder During Laser Based Powder Bed Fusion Processing
,”
Mater. Des.
,
198
, p.
109358
.
26.
Verlinden
,
B.
,
Driver
,
J.
,
Samajdar
,
I.
, and
Doherty
,
R. D.
,
2007
,
Thermo-Mechanical Processing of Metallic Materials
,
Elsevier
,
New York
.
27.
Boyd
,
I. D.
,
Buenconsejo
,
R. S.
,
Piskorz
,
D.
,
Lal
,
B.
,
Crane
,
K. W.
, and
De La Rosa Blanco
,
E.
,
2017
,
ON-Orbit Manufacturing and Assembly of Spacecraft
,
JSTOR
,
Alexandria, VA
.
28.
Erdeniz
,
D.
, and
Ando
,
T.
,
2013
, “
Fabrication of Micro/Nano Structured Aluminum–Nickel Energetic Composites by Means of Ultrasonic Powder Consolidation
,”
Int. J. Mater. Res.
,
104
(
4
), pp.
386
391
.
29.
Wang
,
Y.
,
2020
, “
Full Density Cu-Invar Composites With High Thermal Conductivity and Low Coefficient of Thermal Expansion Fabricated by Ultrasonic Powder Consolidation
,”
Ph.D. thesis
,
Northeastern University
,
Boston, MA
, https://www.proquest.com/docview/2459450845
30.
Hashemabad
,
S. G.
, and
Ando
,
T.
,
2015
, “
Ignition Characteristics of Hybrid Al–Ni–Fe2O3 and Al–Ni–CuO Reactive Composites Fabricated by Ultrasonic Powder Consolidation
,”
Combust. Flame
,
162
(
4
), pp.
1144
1152
.
31.
Shu
,
Y.
,
Ando
,
T.
,
Yin
,
Q.
,
Zhou
,
G.
, and
Gu
,
Z.
,
2017
, “
Phase Diagram and Structural Evolution of Tin/Indium (Sn/In) Nanosolder Particles: From a Non-Equilibrium State to an Equilibrium State
,”
Nanoscale
,
9
(
34
), pp.
12398
12408
.
32.
Chen
,
P.
,
Liao
,
W.
,
Liu
,
L.
,
Luo
,
F.
,
Wu
,
X.
,
Li
,
P.
,
Yang
,
C.
,
Yan
,
M.
,
Liu
,
Y.
, and
Zhang
,
L.
,
2018
, “
Ultrafast Consolidation of Bulk Nanocrystalline Titanium Alloy Through Ultrasonic Vibration
,”
Sci. Rep.
,
8
(
1
), p.
801
.
33.
Abedini
,
R.
,
Abdullah
,
A.
, and
Alizadeh
,
Y.
,
2017
, “
Ultrasonic Assisted Hot Metal Powder Compaction
,”
Ultrason. Sonochem.
,
38
, pp.
704
710
.
34.
Huang
,
H.
, and
Ando
,
T.
,
2022
, “
Mechanisms of Densification and Bonding in the Ultrasonic Consolidation of Aluminum Powder
,”
Metall. Mater. Trans. A
,
53
(
8
), pp.
2797
2810
.
35.
Langenecker
,
B.
,
Frandsen
,
W.
,
Fountain
,
C.
,
Colberg
,
S.
, and
Langenecker
,
J.
,
1964
, “Effects of Ultrasound on Deformation Characteristics of Structural Metals,” NAVWEPS Report, 8482.
36.
Blaha
,
F.
, and
Langenecker
,
B.
,
1955
, “
Tensile Deformation of Zinc Crystal Under Ultrasonic Vibration
,”
Naturwissenschaften
,
42
(
556
), pp.
1
10
.
37.
Lehfeldt
,
E.
,
1967
, “
The Effect of Ultrasonic Vibrations on the Compacting of Metal Powders
,”
Ultrasonics
,
5
(
4
), pp.
219
223
.
38.
Cha
,
H.
,
2011
, “
Densification of the Nanopowder by Using Ultrasonic Vibration Compaction
,”
Rev. Adv. Mater. Sci.
,
28
(
1
), pp.
90
93
.
39.
Arslan
,
C.
,
2023
, “Porosity Calculator for SEM Images,” MATLAB Central File Exchange.
40.
Iassonov
,
P.
,
Gebrenegus
,
T.
, and
Tuller
,
M.
,
2009
, “
Segmentation of X-ray Computed Tomography Images of Porous Materials: A Crucial Step for Characterization and Quantitative Analysis of Pore Structures
,”
Water Resour. Res.
,
45
(
9
).
41.
Porter
,
M. L.
, and
Wildenschild
,
D.
,
2010
, “
Image Analysis Algorithms for Estimating Porous Media Multiphase Flow Variables From Computed Microtomography Data: A Validation Study
,”
Comput. Geosci.
,
14
(
1
), pp.
15
30
.
42.
Bor
,
A.
,
Jargalsaikhan
,
B.
,
Uranchimeg
,
K.
,
Lee
,
J.
, and
Choi
,
H.
,
2021
, “
Particle Morphology Control of Metal Powder With Various Experimental Conditions Using Ball Milling
,”
Powder Technol.
,
394
, pp.
181
190
.
43.
Shi
,
J.
,
1999
, “
Solid State Sintering of Ceramics: Pore Microstructure Models, Densification Equations and Applications
,”
J. Mater. Sci.
,
34
, pp.
3801
3812
.
44.
Wang
,
F.
,
Nie
,
N.
,
He
,
H.
,
Tang
,
Z.
,
Chen
,
Z.
, and
Zhu
,
W.
,
2017
, “
Ultrasonic-Assisted Sintering of Silver Nanoparticles for Flexible Electronics
,”
J. Phys. Chem. C
,
121
(
51
), pp.
28515
28519
.
45.
Wei
,
R.
,
Lv
,
X.
,
Yang
,
M.
, and
Xu
,
J.
,
2017
, “
Effect of Ultrasonic Vibration Treatment on Solid-State Reactions Between Fe2O3 and CaO
,”
Ultrason. Sonochem.
,
38
, pp.
281
288
.
46.
Doumanidis
,
C. C.
,
2009
, “
Nanomanufacturing of Random Branching Material Architectures
,”
Microelectron. Eng.
,
86
(
4–6
), pp.
467
478
.
47.
Pines
,
B. Y.
,
Omel'yanenko
,
I.
, and
Sirenko
,
A.
,
1968
, “
Change in Kinetics of Sintering Under the Action of Ultrasonic Vibration
,”
Soviet Powder Metall. Metal Ceram.
,
6
(
8
), pp.
680
683
.
48.
McQueen
,
H.
, and
Imbert
,
C.
,
2004
, “
Dynamic Recrystallization: Plasticity Enhancing Structural Development
,”
J. Alloys Compd.
,
378
(
1–2
), pp.
35
43
.
49.
Wusatowska-Sarnek
,
A. M.
,
2005
, “
The New Grain Formation During Warm and Hot Deformation of Copper
,”
ASME J. Eng. Mater. Technol.
,
127
(
3
), pp.
295
300
.
50.
Huang
,
K.
, and
Logé
,
R. E.
,
2016
, “
A Review of Dynamic Recrystallization Phenomena in Metallic Materials
,”
Mater. Des.
,
111
, pp.
548
574
.
51.
Chachin
,
V.
, and
Sedyako
,
G.
,
1968
, “
Effects of Ultrasonic Vibrations on the Sintering of Metal-Powder Materials
,”
Soviet Powder Metall. Metal Ceram.
,
7
(
9
), pp.
693
694
.
52.
Li
,
Y.
,
Jing
,
H.
,
Han
,
Y.
,
Xu
,
L.
, and
Lu
,
G.
,
2016
, “
Microstructure and Joint Properties of Nano-Silver Paste by Ultrasonic-Assisted Pressureless Sintering
,”
J. Electron. Mater.
,
45
(
6
), pp.
3003
3012
.
53.
Singh
,
G.
, and
Pandey
,
P. M.
,
2019
, “
Ultrasonic Assisted Pressureless Sintering for Rapid Manufacturing of Complex Copper Components
,”
Mater. Lett.
,
236
, pp.
276
280
.
You do not currently have access to this content.