Abstract

Laser surface remelting is a widely used method for surface modification of titanium and related alloys, particularly to enhance its workability in the biomedical industry through surface nitriding. The present work aims to develop the nitride surface over the laser powder bed fusion (LPBF)-processed Ti6Al4V substrate by introducing the nitrogen environment in the build chamber during the remelting. The effects of different laser power and laser scan speeds were studied over the surface topography and elemental changes of the remelted surface. The result shows an increase in surface roughness with selective laser remelting, which could enhance cell proliferation or osseointegration, which is advantageous for biomedical applications. Energy-dispersive X-ray (EDX) results show a significant increase in nitrogen content in terms of weight percentage for the in situ remelted surface. X-ray diffraction (XRD) phase analysis shows the presence of titanium (Ti) and aluminum (Al) nitride peaks, and X-ray photon-electron spectrometry (XPS) also indicates the formation of nitrogen bonds with Ti and Al, which were initially missing in the substrate. The results reported here confirm the nitride surface formation over the substrate due to the in situ remelting under the nitrogen environment for the LPBF-processed Ti6Al4V, which could be used for improved biomedical applications.

References

1.
Sing
,
S. L.
, and
Yeong
,
W. Y.
,
2020
, “
Laser Powder bed Fusion for Metal Additive Manufacturing: Perspectives on Recent Developments
,”
Virtual Phys. Prototyp.
,
15
(
3
), pp.
359
370
.
2.
Bandyopadhyay
,
A.
, and
Traxel
,
K. D.
,
2018
, “
Invited Review Article: Metaladditive Manufacturing—Modeling Strategies for Application-Optimized Designs
,”
Addit. Manuf.
,
22
, pp.
758
774
.
3.
Druzgalski
,
C. L.
,
Ashby
,
A.
,
Guss
,
G.
,
King
,
W. E.
,
Roehling
,
T. T.
, and
Matthews
,
M. J.
,
2020
, “
Process Optimization of Complex Geometries Using Feed Forward Control for Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
34
, p.
101169
.
4.
Monaheng
,
L. F.
,
du Preez
,
W. B.
, and
Polese
,
C.
,
2021
, “
Towards Qualification in the Aviation Industry: Impact Toughness of Ti6Al4V(Eli) Specimens Produced Through Laser Powder Bed Fusion Followed by Two-Stage Heat Treatment
,”
Metals
,
11
, p.
1736
.
5.
Obeidi
,
M. A.
,
2022
, “
Achieving High Quality Nitinol Parts With Minimised Input Thermal Energy by Optimised Pulse Wave Laser Powder bed Fusion Process
,”
Results Mater.
,
14
, p.
100279
.
6.
Schmitt
,
M.
,
Schlick
,
G.
,
Seidel
,
C.
, and
Reinhart
,
G.
,
2018
, “
Examination of the Processability of 16mncr5 by Means of Laser Powder Bed Fusion
,”
Procedia CIRP
,
74
, pp.
76
81
.
7.
Liu
,
L.
,
Chen
,
C.
,
Zhao
,
R.
,
Wang
,
X.
,
Tao
,
H.
,
Shuai
,
S.
,
Wang
,
J.
,
Liao
,
H.
, and
Ren
,
Z.
,
2021
, “
In-Situ Nitrogen Strengthening of Selective Laser Melted ti6al4v With Superior Mechanical Performance
,”
Addit. Manuf.
,
46
, p.
102142
.
8.
Zhou
,
B.
,
Zhou
,
J.
,
Li
,
H.
, and
Lin
,
F.
,
2018
, “
A Study of the Microstructures and Mechanical Properties of Ti6Al4V Fabricated by SLM Under Vacuum
,”
Mater. Sci. Eng. A
,
724
, pp.
1
10
.
9.
Najafizadeh
,
M.
,
Yazdi
,
S.
,
Bozorg
,
M.
,
Ghasempour-Mouziraji
,
M.
,
Hosseinzadeh
,
M.
,
Zarrabian
,
M.
, and
Cavaliere
,
P.
,
2024
, “
Classification and Applications of Titanium and Its Alloys: A Review
,”
J. Alloys Compd. Commun.
,
3
, p.
100019
.
10.
Zong
,
X.
,
Wang
,
H.
,
Li
,
Z.
,
Li
,
J.
,
Cheng
,
X.
,
Zhu
,
Y.
,
Tian
,
X.
, and
Tang
,
H.
,
2020
, “
Laser Nitridation on Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si Titanium Alloy
,”
Surf. Coat. Technol.
,
386
, p.
125425
.
11.
Bai
,
H.
,
Zhong
,
L.
,
Kang
,
L.
,
Liu
,
J.
,
Zhuang
,
W.
,
Lv
,
Z.
, and
Xu
,
Y.
,
2021
, “
A Review on Wear-Resistant Coating With High Hardness and High Toughness on the Surface of Titanium Alloy
,”
J. Alloys Compd.
,
882
, p.
160645
.
12.
Xue
,
T.
,
Attarilar
,
S.
,
Liu
,
S.
,
Liu
,
J.
,
Song
,
X.
,
Li
,
L.
,
Zhao
,
B.
, and
Tang
,
Y.
,
2020
, “
Surface Modification Techniques of Titanium and Its Alloys to Functionally Optimize Their Biomedical Properties: Thematic Review
,”
Front. Bioeng. Biotechnol.
,
8
, p.
603072
.
13.
Huang
,
C. H.
, and
Yoshimura
,
M.
,
2023
, “
Biocompatible Hydroxyapatite Ceramic Coating on Titanium Alloys by Electrochemical Methods via Growing Integration Layers [GIL] Strategy: A Review
,”
Ceram. Int.
,
49
(
14
), pp.
24532
24540
.
14.
Nguyen
,
T. L.
,
Tseng
,
C. C.
,
Cheng
,
T. C.
,
Nguyen
,
V. T.
, and
Chang
,
Y. H.
,
2022
, “
Formation and Characterization of Calcium Phosphate Ceramic Coatings on Ti-6Al-4V Alloy
,”
Mater. Today Commun.
,
31
, p.
103686
.
15.
Łępicka
,
M.
,
Tsybrii
,
Y.
,
Kiejko
,
D.
, and
Golak
,
K.
,
2021
, “
The Effect of TiN and DLC Anti-Wear Coatings on the Tribofilm Formation and Frictional Heat Phenomena in Coated Metals vs. Wc-Co
,”
Materials
,
14
(
12
), p.
3342
.
16.
Ni
,
J.
,
Liu
,
F.
,
Yang
,
G.
,
Lee
,
G.-H.
,
Chung
,
S.-M.
,
Lee
,
I.-S.
, and
Chen
,
C.
,
2021
, “
3D-Printed Ti6Al4V Femoral Component of Knee: Improvements in Wear and Biological Properties by AIP TiN and TiCrN Coating
,”
J. Mater. Res. Technol.
,
14
, pp.
2322
2332
.
17.
Movassagh-Alanagh
,
F.
, and
Mahdavi
,
M.
,
2020
, “
Improving Wear and Corrosion Resistance of AISI 304 Stainless Steel by a Multilayered Nanocomposite Ti/TiN/TiSiN Coating
,”
Surf. Interfaces
,
18
, p.
100428
.
18.
Łępicka
,
M.
,
Grądzka-Dahlke
,
M.
,
Pieniak
,
D.
,
Pasierbiewicz
,
K.
,
Kryńska
,
K.
, and
Niewczas
,
A.
,
2019
, “
Tribological Performance of Titanium Nitride Coatings: A Comparative Study on TiN-Coated Stainless Steel and Titanium Alloy
,”
Wear
,
422–423
, pp.
68
80
.
19.
Wriedt
,
H. A.
, and
Murray
,
J. L.
,
1987
, “
The N-Ti (Nitrogen-Titanium) System
,”
Bull. Alloy Phase Diagrams
,
8
(
4
), pp.
378
388
.
20.
Chan
,
C.-W.
,
Quinn
,
J.
,
Hussain
,
I.
,
Carson
,
L.
,
Smith
,
G. C.
, and
Lee
,
S.
,
2021
, “
A Promising Laser Nitriding Method for the Design of Next Generation Orthopaedic Implants: Cytotoxicity and Antibacterial Performance of Titanium Nitride (TiN) Wear Nano-Particles, and Enhanced Wear Properties of Laser-Nitrided Ti6Al4V Surfaces
,”
Surf. Coat. Technol.
,
405
, p.
126714
.
21.
Resende
,
F. A.
,
Silva
,
M. M.
,
de Moares Oliveira
,
R.
,
Silva
,
C.
,
Pichon
,
L.
,
Radi
,
P. A.
,
dos Reis
,
A. G.
, and
Reis
,
D. A. P.
,
2023
, “
Effect of Plasma Immersion Ion Implantation on Wear Behavior of Ti-6Al-4V Alloy
,”
Surf. Topogr. Metrol. Prop.
,
11
(
1
), p.
014007
.
22.
Shi
,
B.
,
Huang
,
S.
,
Zhu
,
P.
,
Xu
,
C.
,
Guo
,
P.
, and
Fu
,
Y.
,
2020
, “
In-Situ TiN Reinforced Composite Coatings Prepared by Plasma Spray Welding on Ti6Al4V
,”
Mater. Lett.
,
276
, p.
128093
.
23.
Bahi
,
R.
,
Nouveau
,
C.
,
Beliardouh
,
N. E.
,
Ramoul
,
C. E.
,
Meddah
,
S.
, and
Ghelloudj
,
O.
,
2020
, “
Surface Performances of Ti-6Al-4V Substrates Coated PVD Multilayered Films in Biological Environments
,”
Surf. Coat. Technol.
,
385
, p.
125412
.
24.
von Fieandt
,
L.
,
Larsson
,
T.
,
Lindahl
,
E.
,
Bäcke
,
O.
, and
Boman
,
M.
,
2018
, “
Chemical Vapor Deposition of TiN on Transition Metal Substrates
,”
Surf. Coat. Technol.
,
334
, pp.
373
383
.
25.
Zeng
,
C.
,
Wen
,
H.
,
Ettefagh
,
A. H.
,
Zhang
,
B.
,
Gao
,
J.
,
Haghshenas
,
A.
,
Raush
,
J. R.
, and
Guo
,
S.
,
2020
, “
Laser Nitriding of Titanium Surfaces for Biomedical Applications
,”
Surf. Coat. Technol.
,
385
, p.
125397
.
26.
Ma
,
A.
,
Liu
,
D.
,
Zhang
,
X.
,
Liu
,
D.
,
He
,
G.
, and
Yin
,
X.
,
2021
, “
Solid Particle Erosion Behavior and Failure Mechanism of TiZrN Coatings for Ti-6Al-4V Alloy
,”
Surf. Coat. Technol.
,
426
, p.
127701
.
27.
Huang
,
T. C.
,
Hsu
,
S. Y.
,
Lai
,
Y. T.
,
Tsai
,
S. Y.
, and
Duh
,
J. G.
,
2021
, “
Effect of NiTi Metallic Layer Thickness on Scratch Resistance and Wear Behavior of High Entropy Alloy (CrAlNbSiV) Nitride Coating
,”
Surf. Coat. Technol.
,
425
, p.
127713
.
28.
Dutta Majumdar
,
J.
, and
Manna
,
I.
,
2015
, “21—Laser Surface Engineering of Titanium and its Alloys for Improved Wear, Corrosion and High-Temperature Oxidation Resistance,”
Laser Surface Engineering, Woodhead Publishing Series in Electronic and Optical Materials
,
J.
Lawrence
and
D. G.
Waugh
, eds.,
Woodhead Publishing
, pp.
483
521
.
29.
He
,
B.
,
Shao
,
W.
, and
Tian
,
X.
,
2022
, “
Surface Grain Formation Mechanism in the Laser Remelting Molten Pool of a Near-β Titanium Alloy
,”
Materialia
,
24
, p.
101521
.
30.
Vaithilingam
,
J.
,
Goodridge
,
R. D.
,
Hague
,
R. J.
,
Christie
,
S. D.
, and
Edmondson
,
S.
,
2016
, “
The Effect of Laser Remelting on the Surface Chemistry of Ti6Al4V Components Fabricated by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
232
, pp.
1
8
.
31.
Grabowski
,
A.
,
Florian
,
T.
,
Wieczorek
,
J.
, and
Adamiak
,
M.
,
2021
, “
Structuring of the Ti6Al4V Alloy Surface by Pulsed Laser Remelting
,”
Appl. Surf. Sci.
,
535
, p.
147618
.
32.
Esfahani
,
E. A.
,
Bukuaghangin
,
O.
,
Banfield
,
S.
,
Vangölü
,
Y.
,
Yang
,
L.
,
Neville
,
A.
,
Hall
,
R.
, and
Bryant
,
M.
,
2022
, “
Surface Engineering of Wrought and Additive Layer Manufactured Ti-6Al-4V Alloy for Enhanced Load Bearing and Bio-Tribocorrosion Applications
,”
Surf. Coat. Technol.
,
442
, p.
128139
.
33.
Vasudev
,
H.
, and
Prakash
,
C.
,
2023
,
Handbook of Laser-Based Sustainable Surface Modification and Manufacturing Techniques
,
Taylor and Francis
,
Oxford, UK
.
34.
Vaithilingam
,
J.
,
Prina
,
E.
,
Goodridge
,
R. D.
,
Hague
,
R. J.
,
Edmondson
,
S.
,
Rose
,
F. R.
, and
Christie
,
S. D.
,
2016
, “
Surface Chemistry of Ti6Al4V Components Fabricated Using Selective Laser Melting for Biomedical Applications
,”
Mater. Sci. Eng., C
,
67
, pp.
294
303
.
35.
Wang
,
D. W.
,
Zhou
,
Y. H.
,
Shen
,
J.
,
Liu
,
Y.
,
Li
,
D. F.
,
Zhou
,
Q.
,
Sha
,
G.
,
Xu
,
P.
,
Ebel
,
T.
, and
Yan
,
M.
,
2019
, “
Selective Laser Melting Under the Reactive Atmosphere: A Convenient and Efficient Approach to Fabricate Ultrahigh Strength Commercially Pure Titanium Without Sacrificing Ductility
,”
Mater. Sci. Eng. A
,
762
, p.
138078
.
36.
Golyshev
,
A.
,
Malikov
,
A.
,
Orishich
,
A.
,
Gulov
,
M.
, and
Ancharov
,
A.
,
2021
, “
The Effect of Using Repetitively Pulsed Laser Radiation in Selective Laser Melting When Creating a Metal-Matrix Composite Ti-6Al-4V-B4C
,”
Int. J. Adv. Manuf. Technol.
,
117
(
5–6
), pp.
1891
1904
.
37.
Saghaian
,
S. E.
,
Nematollahi
,
M.
,
Toker
,
G.
,
Hinojos
,
A.
,
Moghaddam
,
N. S.
,
Saedi
,
S.
,
Lu
,
C. Y.
, et al
,
2022
, “
Effect of Hatch Spacing and Laser Power on Microstructure, Texture, and Thermomechanical Properties of Laser Powder Bed Fusion (L-PBF) Additively Manufactured NiTi
,”
Opt. Laser Technol.
,
149
, p.
107680
.
38.
Paraschiv
,
A.
,
Matache
,
G.
,
Condruz
,
M. R.
,
Frigioescu
,
T. F.
, and
Pambaguian
,
L.
,
2022
, “
Laser Powder Bed Fusion Process Parameters' Optimization for Fabrication of Dense in 625
,”
Materials
,
15
(
16
), p.
5777
.
39.
Abboud
,
J.
,
2013
, “
Effect of Processing Parameters on Titanium Nitrided Surface Layers Produced by Laser Gas Nitriding
,”
Surf. Coat. Technol.
,
214
, pp.
19
29
.
40.
Aggarwal
,
A.
,
Shin
,
Y. C.
, and
Kumar
,
A.
,
2024
, “
Unravelling Keyhole Instabilities and Laser Absorption Dynamics During Laser Irradiation of Ti6Al4V: A High-Fidelity Thermo-Fluidic Study
,”
Int. J. Heat Mass Transfer
,
219
, p.
124841
.
41.
Kabalnov
,
A.
,
2001
, “
Ostwald Ripening and Related Phenomena
,”
J. Dispersion Sci. Technol.
,
22
(
1
), pp.
1
12
.
42.
Sun
,
W.
,
Shan
,
F.
,
Zong
,
N.
,
Dong
,
H.
, and
Jing
,
T.
,
2021
, “
A Simulation and Experiment Study on Phase Transformations of Ti-6Al-4V in Wire Laser Additive Manufacturing
,”
Mater. Des.
,
207
, p.
109843
.
43.
Dilip
,
J. J. S.
,
Zhang
,
S.
,
Teng
,
C.
,
Zeng
,
K.
,
Robinson
,
C.
,
Pal
,
D.
, and
Stucker
,
B.
,
2017
, “
Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting
,”
Prog. Addit. Manuf.
,
2
(
3
), pp.
157
167
.
44.
Sathish
,
S.
,
Geetha
,
M.
,
Pandey
,
N.
,
Richard
,
C.
, and
Asokamani
,
R.
,
2010
, “
Studies on the Corrosion and Wear Behavior of the Laser Nitrided Biomedical Titanium and Its Alloys
,”
Mater. Sci. Eng., C
,
30
(
3
), pp.
376
382
.
45.
Shabanlou
,
E.
,
Jaleh
,
B.
,
Mohazzab
,
B. F.
,
Kakuee
,
O.
,
Golbedaghi
,
R.
, and
Orooji
,
Y.
,
2021
, “
TiN Formation on Ti Target by Laser Ablation Method Under Different N2 Gas Pressure and Laser Scanning Cycles: A Wettability Study
,”
Surf. Interfaces
,
27
, p.
101509
.
46.
Cai
,
R.
,
Zhao
,
C.
, and
Nie
,
X.
,
2019
, “
Effect of Plasma Electrolytic Oxidation Process on Surface Characteristics and Tribological Behavior
,”
Surf. Coat. Technol.
,
375
, pp.
824
832
.
47.
Bao
,
Y.
,
Wang
,
W.
,
Cui
,
W.
, and
Qin
,
G.
,
2021
, “
Corrosion Resistance and Antibacterial Activity of Ti-No Coatings Deposited on Dental Titanium Alloy
,”
Surf. Coat. Technol.
,
419
, p.
127296
.
48.
Maarouf
,
M.
,
Haider
,
M. B.
,
Drmosh
,
Q. A.
, and
Mekki
,
M. B.
,
2021
, “
X-Ray Photoelectron Spectroscopy Depth Profiling of as-Grown and Annealed Titanium Nitride Thin Films
,”
Crystals
,
11
(
3
), p.
239
.
49.
Huerta Murillo
,
D.
,
Garcia Giron
,
A.
,
Romano
,
J. M.
,
Cardoso
,
J. T.
,
Cordovilla
,
F.
,
Walker
,
M.
,
Dimov
,
S. S.
, and
Ocaña
,
J. L.
,
2018
, “
Wettability Modification of Laser-Fabricated Hierarchical Surface Structures in Ti-6Al-4V Titanium Alloy
,”
Appl. Surf. Sci.
,
463
(
09
), pp.
838
846
.
50.
Shvab
,
R.
,
Hryha
,
E.
, and
Nyborg
,
L.
,
2017
, “
Surface Chemistry of the Titanium Powder Studied by XPS Using Internal Standard Reference
,”
Powder Metall.
,
60
(
1
), pp.
42
48
.
51.
Wiame
,
H.
,
Centeno
,
M. A.
,
Picard
,
S.
,
Bastians
,
P.
, and
Grange
,
P.
,
1998
, “
Thermal Oxidation Under Oxygen of Zirconium Nitride Studied by XPS, DRIFTS, TG-MS
,”
J. Eur. Ceram. Soc.
,
18
(
9
), pp.
1293
1299
.
52.
Chang
,
C. C.
,
Nogan
,
J.
,
Yang
,
Z. P.
,
Kort-Kamp
,
W. J. M.
,
Ross
,
W.
,
Luk
,
T. S.
,
Dalvit
,
D. A. R.
,
Azad
,
A. K.
, and
Chen
,
H.-T.
,
2019
, “
Highly Plasmonic Titanium Nitride by Room-Temperature Sputtering
,”
Sci. Rep.
,
9
, p.
15287
.
53.
Glaser
,
A.
,
Surnev
,
S.
,
Netzer
,
F. P.
,
Fateh
,
N.
,
Fontalvo
,
G. A.
, and
Mitterer
,
C.
,
2007
, “
Oxidation of Vanadium Nitride and Titanium Nitride Coatings
,”
Surf. Sci.
,
601
(
4
), pp.
1153
1159
.
54.
Hsu
,
J. C.
,
Lin
,
Y. H.
, and
Wang
,
P. W.
,
2020
, “
X-Ray Photoelectron Spectroscopy Analysis of Nitrogen-Doped TiO2 Films Prepared by Reactive-ion-Beam Sputtering With Various NH3/O2 Gas Mixture Ratios
,”
Coatings
,
10
(
1
), p.
47
.
55.
Mom
,
R.
,
Frevel
,
L.
,
Velasco-Vélez
,
J.-J.
,
Plodinec
,
M.
,
KnopGericke
,
A.
, and
Schlögl
,
R.
,
2019
, “
The Oxidation of Platinum Under Wet Conditions Observed by Electrochemical X-Ray Photoelectron Spectroscopy
,”
J. Am. Chem. Soc.
,
141
(
16
), pp.
6537
6544
.
You do not currently have access to this content.