Abstract

Microgrid technology integrates storage devices, renewable energy sources, and controllable loads and has been widely explored in residential, commercial, and critical facilities. However, its potential in manufacturing remains largely underexplored, where optimal control of microgrids containing energy storage systems (ESS) is crucial. Two primary challenges arise in integrated microgrid-manufacturing systems: fluctuating renewable energy output and nondeterministic polynomial (NP)-hard demand-side control. Addressing both challenges simultaneously increases complexity. This article proposes an integrated control considering ESS degradation, optimizing control on both the manufacturing demand and microgrid energy supply sides within the production constraints. It formulates the problem in a decentralized partially observable Markov decision process (Dec-POMDP) framework, treating the system as a multiagent environment. The multiagent deep deterministic policy gradient (MADDPG) algorithm is adapted to optimize control policies. Investigating the trained policies provides insights into their logic, and a rule-based policy is introduced for practical implementation. Experimental validation on a manufacturing system validates the effectiveness of the proposed method and the rule-based policy.

References

1.
Pullins
,
S.
,
2019
, “
Why Microgrids Are Becoming an Important Part of the Energy Infrastructure
,”
Electr. J.
,
32
(
5
), pp.
17
21
.
2.
Uddin
,
M.
,
Mo
,
H.
,
Dong
,
D.
,
Elsawah
,
S.
,
Zhu
,
J.
, and
Guerrero
,
J. M.
,
2023
, “
Microgrids: A Review, Outstanding Issues and Future Trends
,”
Energy Strategy Rev.
,
49
(
49
), p.
101127
.
3.
Mahjoub
,
S.
,
Chrifi-Alaoui
,
L.
,
Drid
,
S.
, and
Derbel
,
N.
,
2023
, “
Control and Implementation of an Energy Management Strategy for a PV–Wind–Battery Microgrid Based on an Intelligent Prediction Algorithm of Energy Production
,”
Energies
,
16
(
4
), p.
1883
.
4.
Elmorshedy
,
M. F.
,
Elkadeem
,
M. R.
,
Kotb
,
K. M.
,
Taha
,
I. B. M.
, and
Mazzeo
,
D.
,
2021
, “
Optimal Design and Energy Management of an Isolated Fully Renewable Energy System Integrating Batteries and Supercapacitors
,”
Energy Convers. Manage.
,
245
, p.
114584
.
5.
Zhou
,
Q.
,
Shahidehpour
,
M.
,
Paaso
,
A.
,
Bahramirad
,
S.
,
Alabdulwahab
,
A.
, and
Abusorrah
,
A.
,
2020
, “
Distributed Control and Communication Strategies in Networked Microgrids
,”
IEEE Commun. Surv. Tutor.
,
22
(
4
), pp.
2586
2633
.
6.
Yang
,
J.
,
Sun
,
Z.
,
Hu
,
W.
, and
Steinmeister
,
L.
,
2022
, “
Joint Control of Manufacturing and Onsite Microgrid System via Novel Neural-Network Integrated Reinforcement Learning Algorithms
,”
Appl. Energy
,
315
, p.
118982
.
7.
Huang
,
M.
,
Lin
,
X.
,
Feng
,
Z.
,
Wu
,
D.
, and
Shi
,
Z.
,
2023
, “
A Multi-Agent Decision Approach for Optimal Energy Allocation in Microgrid System
,”
Electr. Power Syst. Res.
,
221
, p.
109399
.
8.
Neri
,
A.
,
Butturi
,
M. A.
,
Lolli
,
F.
, and
Gamberini
,
R.
,
2023
, “
Inter-Firm Exchanges, Distributed Renewable Energy Generation, and Battery Energy Storage System Integration via Microgrids for Energy Symbiosis
,”
J. Clean. Prod.
,
414
, p.
137529
.
9.
Dashtdar
,
M.
,
Bajaj
,
M.
, and
Hosseinimoghadam
,
S. M. S.
,
2022
, “
Design of Optimal Energy Management System in a Residential Microgrid Based on Smart Control
,”
Smart Sci.
,
10
(
1
), pp.
25
39
.
10.
Ahmad
,
T.
, and
Zhang
,
D.
,
2020
, “
A Critical Review of Comparative Global Historical Energy Consumption and Future Demand: The Story Told So Far
,”
Energy Rep.
,
6
, pp.
1973
1991
.
11.
Islam
,
M. M.
, and
Yao
,
X.
,
2016
, “
Simulation-Based Investigation for the Application of Microgrid With Renewable Sources in Manufacturing Systems Towards Sustainability
,”
Proceedings of the International Annual Conference of the American Society for Engineering Management
,
Charlotte, NC
,
Oct. 26
.
12.
Zhong
,
X.
,
Islam
,
M.
,
Xiong
,
H.
, and
Sun
,
Z.
,
2017
, “
Design the Capacity of Onsite Generation System With Renewable Sources for Manufacturing Plant
,”
Proc. Comput. Sci.
,
114
, pp.
433
440
.
13.
Yao
,
T.
,
Jiang
,
D.
,
Xin
,
R.
,
Wu
,
J.
, and
Sun
,
S.
,
2020
, “
Load Prediction of Microgrid Optimal Operation Based on Improved Algorithm in Machine Learning
,”
Int. J. Mechatron. Appl. Mech.
,
7
(
18
), pp.
124
128
. DOI: 10.17683/ijomam/issue7.18
14.
Faraji
,
J.
,
Ketabi
,
A.
,
Hashemi-Dezaki
,
H.
,
Shafie-Khah
,
M.
, and
Catalao
,
J. P.
,
2020
, “
Optimal Day-Ahead Self-Scheduling and Operation of Prosumer Microgrids Using Hybrid Machine Learning-Based Weather and Load Forecasting
,”
IEEE Access
,
8
, pp.
157284
157305
.
15.
Luo
,
X.
, and
Mahdjoubi
,
L.
,
2024
, “
Towards a Blockchain and Machine Learning-Based Framework for Decentralised Energy Management
,”
Energy Build.
,
303
, p.
113757
.
16.
Rosero
,
D. G.
,
Díaz
,
N. L.
, and
Trujillo
,
C. L.
,
2021
, “
Cloud and Machine Learning Experiments Applied to the Energy Management in a Microgrid Cluster
,”
Appl. Energy
,
304
, p.
117770
.
17.
Rosero
,
D. G.
,
Sanabria
,
E.
,
Díaz
,
N. L.
,
Trujillo
,
C. L.
,
Luna
,
A.
, and
Andrade
,
F.
,
2023
, “
Full-Deployed Energy Management System Tested in a Microgrid Cluster
,”
Appl. Energy
,
334
, p.
120674
.
18.
Mobtahej
,
M.
,
Barzegaran
,
M.
, and
Esapour
,
K.
,
2023
, “
A Novel Three-Stage Demand Side Management Framework for Stochastic Energy Scheduling of Renewable Microgrids
,”
Sol. Energy
,
256
, pp.
32
43
.
19.
Marimuthu
,
R.
,
2023
, “
Review on Advanced Control Techniques for Microgrids
,”
Energy Rep.
,
10
, pp.
3054
3072
.
20.
Azarhooshang
,
A.
,
Sedighizadeh
,
D.
, and
Sedighizadeh
,
M.
,
2021
, “
Two-Stage Stochastic Operation Considering Day-Ahead and Real-Time Scheduling of Microgrids With High Renewable Energy Sources and Electric Vehicles Based on Multi-Layer Energy Management System
,”
Electr. Power Syst. Res.
,
201
, p.
107527
.
21.
Chung
,
C.-H.
,
Jangra
,
S.
,
Lai
,
Q.
, and
Lin
,
X.
,
2020
, “
Optimization of Electric Vehicle Charging for Battery Maintenance and Degradation Management
,”
IEEE Trans. Transp. Electrif.
,
6
(
3
), pp.
958
969
.
22.
Silva
,
J. A. A.
,
López
,
J. C.
,
Guzman
,
C. P.
,
Arias
,
N. B.
,
Rider
,
M. J.
, and
da Silva
,
L. C. P.
,
2023
, “
An IoT-Based Energy Management System for AC Microgrids With Grid and Security Constraints
,”
Appl. Energy
,
337
, p.
120904
.
23.
Miletić
,
M.
,
Pandžić
,
H.
, and
Yang
,
D.
,
2020
, “
Operating and Investment Models for Energy Storage Systems
,”
Energies
,
13
(
18
), p.
4600
.
24.
Dinata
,
N. F. P.
,
Ramli
,
M. A. M.
,
Jambak
,
M. I.
,
Sidik
,
M. A. B.
, and
Alqahtani
,
M. M.
,
2024
, “
Designing an Optimal Microgrid Control System Using Deep Reinforcement Learning: A Systematic Review
,”
Eng. Sci. Technol. Int. J.
,
51
, p.
101651
.
25.
Lu
,
R.
,
Hong
,
S. H.
, and
Zhang
,
X.
,
2018
, “
A Dynamic Pricing Demand Response Algorithm for Smart Grid: Reinforcement Learning Approach
,”
Appl. Energy
,
220
, pp.
220
230
.
26.
Kofinas
,
P.
,
Vouros
,
G.
, and
Dounis
,
A. I.
,
2018
, “
Energy Management in Solar Microgrid via Reinforcement Learning Using Fuzzy Reward
,”
Adv. Build. Energy Res.
,
12
(
1
), pp.
97
115
.
27.
Aaltonen
,
H.
,
Sierla
,
S.
,
Subramanya
,
R.
, and
Vyatkin
,
V.
,
2021
, “
A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage
,”
Energies
,
14
(
17
), p.
5587
.
28.
Li
,
Z.
,
Wu
,
L.
,
Xu
,
Y.
,
Moazeni
,
S.
, and
Tang
,
Z.
,
2021
, “
Multi-Stage Real-Time Operation of a Multi-Energy Microgrid With Electrical and Thermal Energy Storage Assets: A Data-Driven MPC-ADP Approach
,”
IEEE Trans. Smart Grid
,
13
(
1
), pp.
213
226
.
29.
Waseem
,
M.
, and
Chang
,
Q.
,
2023
, “
Adaptive Mobile Robot Scheduling in Multiproduct Flexible Manufacturing Systems Using Reinforcement Learning
,”
ASME J. Manuf. Sci. Eng.
, 145(12), p. 121005.
30.
Waseem
,
M.
, and
Chang
,
Q.
,
2024
, “
From Nash Q-Learning to Nash-MADDPG: Advancements in Multiagent Control for Multiproduct Flexible Manufacturing Systems
,”
J. Manuf. Syst.
,
74
, pp.
129
140
.
31.
Xiong
,
J.
,
Wang
,
Q.
,
Yang
,
Z.
,
Sun
,
P.
,
Han
,
L.
,
Zheng
,
Y.
,
Fu
,
H.
,
Zhang
,
T.
,
Liu
,
J.
, and
Liu
,
H.
,
2018
, “Parametrized Deep q-Networks Learning: Reinforcement Learning With Discrete-Continuous Hybrid Action Space,” preprint arXiv:1810.06394.
32.
Fu
,
H.
,
Tang
,
H.
,
Hao
,
J.
,
Lei
,
Z.
,
Chen
,
Y.
, and
Fan
,
C.
,
2019
, “Deep Multi-Agent Reinforcement Learning With Discrete-Continuous Hybrid Action Spaces,” preprint arXiv:1903.04959.
33.
Hua
,
H.
,
Zhao
,
R.
,
Wen
,
G.
, and
Wu
,
K.
,
2023
, “
A Further Exploration of Deep Multi-Agent Reinforcement Learning With Hybrid Action Space
,”
International Conference on Artificial Neural Networks
,
Belgrade, Serbia
,
Sept. 22–24
, Springer.
34.
Fan
,
Z.
,
Su
,
R.
,
Zhang
,
W.
, and
Yu
,
Y.
,
2019
, “Hybrid Actor-Critic Reinforcement Learning in Parameterized Action Space,” preprint arXiv:1903.01344.
35.
Huang
,
C.
,
Zhang
,
H.
,
Wang
,
L.
,
Luo
,
X.
, and
Song
,
Y.
,
2022
, “
Mixed Deep Reinforcement Learning Considering Discrete-Continuous Hybrid Action Space for Smart Home Energy Management
,”
J. Modern Power Syst. Clean Energy
,
10
(
3
), pp.
743
754
.
36.
Neunert
,
M.
,
Abdolmaleki
,
A.
,
Wulfmeier
,
M.
,
Lampe
,
T.
,
Springenberg
,
T.
,
Hafner
,
R.
,
Romano
,
F.
,
Buchli
,
J.
,
Heess
,
N.
, and
Riedmiller
,
M.
,
2020
, “
Continuous-Discrete Reinforcement Learning for Hybrid Control in Robotics
,”
Conference on Robot Learning
,
Osaka, Japan
,
Oct. 30
, PMLR.
37.
Zou
,
J.
,
Chang
,
Q.
,
Arinez
,
J.
, and
Xiao
,
G.
,
2017
, “
Data-Driven Modeling and Real-Time Distributed Control for Energy Efficient Manufacturing Systems
,”
Energy
,
127
, pp.
247
257
.
38.
Wen
,
X.
,
Fu
,
Y.
,
Yang
,
W.
,
Wang
,
H.
,
Zhang
,
Y.
, and
Sun
,
C.
,
2023
, “
An Effective Hybrid Algorithm for Joint Scheduling of Machines and AGVs in Flexible Job Shop
,”
Meas. Control
,
56
(
9–10
), p.
00202940231173750
.
39.
Local
,
S. E.
,
2016
, “
Solar Energy Data and Resources in the US
.” https://solarenergylocal.com/.
40.
Angel
,
J.
,
2000
, “State Climatologist Office for Illinois.” http://www.isws.illinois.edu/atmos/statecli/wind/wind.htm.
41.
Appelman
,
M.
,
Venugopal
,
P.
, and
Rietveld
,
G.
,
2022
, “
Impact of Discharge Current Profiles on Li-Ion Battery Pack Degradation
,”
2022 IEEE 20th International Power Electronics and Motion Control Conference (PEMC)
,
Brasov, Romania
,
Sept. 25–29
.
42.
Mughees
,
N.
,
Jaffery
,
M. H.
,
Mughees
,
A.
,
Ansari
,
E. A.
, and
Mughees
,
A.
,
2023
, “
Reinforcement Learning-Based Composite Differential Evolution for Integrated Demand Response Scheme in Industrial Microgrids
,”
Appl. Energy
,
342
, p.
121150
.
43.
Zhou
,
C.
,
Qian
,
K.
,
Allan
,
M.
, and
Zhou
,
W.
,
2011
, “
Modeling of the Cost of EV Battery Wear Due to V2G Application in Power Systems
,”
IEEE Trans. Energy Convers.
,
26
(
4
), pp.
1041
1050
.
44.
Koller
,
M.
,
Borsche
,
T.
,
Ulbig
,
A.
, and
Andersson
,
G.
,
2013
, “
Defining a Degradation Cost Function for Optimal Control of a Battery Energy Storage System
,”
2013 IEEE Grenoble Conference
,
Grenoble, France
,
June 16–20
.
45.
Li
,
J.
, and
Meerkov
,
S. M.
,
2008
,
Production Systems Engineering
,
Springer Science & Business Media
,
New York
.
46.
Lowe
,
R.
,
Wu
,
Y. I.
,
Tamar
,
A.
,
Harb
,
J.
,
Pieter Abbeel
,
O.
, and
Mordatch
,
I.
,
2017
, “
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
,”
Adv. Neural Inf. Process. Syst.
,
30
, pp.
6382
6393
. https://dl.acm.org/doi/10.5555/3295222.3295385
You do not currently have access to this content.