Abstract

In this work, we used in situ acoustic emission (AE) sensors for online monitoring of part quality in a laser powder bed fusion (LPBF) additive manufacturing process. Currently, sensors such as thermo-optical imaging cameras and photodiodes are used to observe the laser–material interactions on the top surface of the powder bed. Data from these sensors are subsequently analyzed to detect the onset of incipient flaws, e.g., porosity. However, a drawback of these existing sensing modalities is that they are unable to penetrate beyond the top surface of the powder bed. It is important to detect process phenomena within the bulk volume of the part buried under the powder, because these subsurface phenomena are linked to such flaws as support failures, poor surface finish, and microstructure heterogeneity, among others. To address this existing gap, four passive AE sensors were installed in the build plate of an EOS M290 LPBF system. Acoustic emission data were acquired during the processing of stainless steel 316L samples under differing parameter settings and part design variations. The AE signals were decomposed using wavelet transforms. Subsequently, to localize the origin of AE signals to specific part features, they were spatially synchronized with infrared thermal images. The resulting spatially localized AE signatures were statistically correlated (R2 > 85%) to multiscale aspects of part quality, such as thermal-induced part failures, surface roughness, and solidified microstructure (primary dendritic arm spacing). This work takes a critical step toward in situ, nondestructive evaluation of multiscale part quality aspects using AE sensors.

References

1.
Sames
,
W. J.
,
List
,
F. A.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
315
360
.
2.
Blakey-Milner
,
B.
,
Gradl
,
P.
,
Snedden
,
G.
,
Brooks
,
M.
,
Pitot
,
J.
,
Lopez
,
E.
,
Leary
,
M.
,
Berto
,
F.
, and
du Plessis
,
A.
,
2021
, “
Metal Additive Manufacturing in Aerospace: A Review
,”
Mater. Des.
,
209
, p.
110008
.
3.
Kumar
,
G. R.
,
Sathishkumar
,
M.
,
Vignesh
,
M.
,
Manikandan
,
M.
,
Rajyalakshmi
,
G.
,
Ramanujam
,
R.
, and
Arivazhagan
,
N.
,
2022
, “
Metal Additive Manufacturing of Commercial Aerospace Components—A Comprehensive Review
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
,
237
(
2
), pp.
441
454
.
4.
Mostafaei
,
A.
,
Zhao
,
C.
,
He
,
Y.
,
Reza Ghiaasiaan
,
S.
,
Shi
,
B.
,
Shao
,
S.
,
Shamsaei
,
N.
, et al
,
2022
, “
Defects and Anomalies in Powder Bed Fusion Metal Additive Manufacturing
,”
Curr. Opin. Solid State Mater. Sci.
,
26
(
2
), p.
100974
.
5.
Gradl
,
P. R.
,
Tinker
,
D. C.
,
Ivester
,
J.
,
Skinner
,
S. W.
,
Teasley
,
T.
, and
Bili
,
J. L.
,
2021
, “
Geometric Feature Reproducibility for Laser Powder Bed Fusion (L-PBF) Additive Manufacturing With Inconel 718
,”
Addit. Manuf.
,
47
, p.
102305
.
6.
Gordon
,
J. V.
,
Narra
,
S. P.
,
Cunningham
,
R. W.
,
Liu
,
H.
,
Chen
,
H.
,
Suter
,
R. M.
,
Beuth
,
J. L.
, and
Rollett
,
A. D.
,
2020
, “
Defect Structure Process Maps for Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
36
, p.
101552
.
7.
Narasimharaju
,
S. R.
,
Zeng
,
W.
,
See
,
T. L.
,
Zhu
,
Z.
,
Scott
,
P.
,
Jiang
,
X.
, and
Lou
,
S.
,
2022
, “
A Comprehensive Review on Laser Powder Bed Fusion of Steels: Processing, Microstructure, Defects and Control Methods, Mechanical Properties, Current Challenges and Future Trends
,”
J. Manuf. Process.
,
75
, pp.
375
414
.
8.
Sanchez
,
S.
,
Smith
,
P.
,
Xu
,
Z.
,
Gaspard
,
G.
,
Hyde
,
C. J.
,
Wits
,
W. W.
,
Ashcroft
,
I. A.
,
Chen
,
H.
, and
Clare
,
A. T.
,
2021
, “
Powder Bed Fusion of Nickel-Based Superalloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
165
, p.
103729
.
9.
Seifi
,
M.
,
Gorelik
,
M.
,
Waller
,
J.
,
Hrabe
,
N.
,
Shamsaei
,
N.
,
Daniewicz
,
S.
, and
Lewandowski
,
J. J.
,
2017
, “
Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification
,”
JOM
,
69
(
3
), pp.
439
455
.
10.
Russell
,
R.
,
Wells
,
D.
,
Waller
,
J.
,
Poorganji
,
B.
,
Ott
,
E.
,
Nakagawa
,
T.
,
Sandoval
,
H.
,
Shamsaei
,
N.
, and
Seifi
,
M.
,
2019
,
Additive Manufacturing for the Aerospace Industry
,
F.
Froes
, and
R.
Boyer
, eds.,
Elsevier
,
Oxford, UK
, pp.
33
66
.
11.
Du Plessis
,
A.
,
le Roux
,
S. G.
,
Waller
,
J.
,
Sperling
,
P.
,
Achilles
,
N.
,
Beerlink
,
A.
,
Métayer
,
J.-F.
, et al
,
2019
, “
Laboratory X-Ray Tomography for Metal Additive Manufacturing: Round Robin Test
,”
Addit. Manuf.
,
30
, p.
100837
.
12.
Honarvar
,
F.
,
Patel
,
S.
,
Vlasea
,
M.
,
Amini
,
H.
, and
Varvani-Farahani
,
A.
,
2021
, “
Nondestructive Characterization of Laser Powder Bed Fusion Components Using High-Frequency Phased Array Ultrasonic Testing
,”
J. Mater. Eng. Perform.
,
30
(
9
), pp.
6766
6776
.
13.
Honarvar
,
F.
, and
Varvani-Farahani
,
A.
,
2020
, “
A Review of Ultrasonic Testing Applications in Additive Manufacturing: Defect Evaluation, Material Characterization, and Process Control
,”
Ultrasonics
,
108
, p.
106227
.
14.
Huang
,
N.
,
Cook
,
O. J.
,
Smithson
,
R. L. W.
,
Kube
,
C. M.
,
Argüelles
,
A. P.
, and
Beese
,
A. M.
,
2022
, “
Use of Ultrasound to Identify Microstructure-Property Relationships in 316 Stainless Steel Fabricated With Binder Jet Additive Manufacturing
,”
Addit. Manuf.
,
51
, p.
102591
.
15.
Smoqi
,
Z.
,
Sotelo
,
L. D.
,
Gaikwad
,
A.
,
Turner
,
J. A.
, and
Rao
,
P.
,
2023
, “
Ultrasonic Nondestructive Evaluation of Additively Manufactured Wear Coatings
,”
NDTE Int.
,
133
, p.
102754
.
16.
Wang
,
P.
,
Yang
,
Y.
, and
Moghaddam
,
N. S.
,
2022
, “
Process Modeling in Laser Powder Bed Fusion Towards Defect Detection and Quality Control Via Machine Learning: The State-of-the-Art and Research Challenges
,”
J. Manuf. Process.
,
73
, pp.
961
984
.
17.
AbouelNour
,
Y.
, and
Gupta
,
N.
,
2022
, “
In-Situ Monitoring of Sub-surface and Internal Defects in Additive Manufacturing: A Review
,”
Mater. Des.
,
222
, p.
111063
.
18.
Grasso
,
M.
,
Remani
,
A.
,
Dickins
,
A.
,
Colosimo
,
B. M.
, and
Leach
,
R. K.
,
2021
, “
In-Situ Measurement and Monitoring Methods for Metal Powder Bed Fusion: An Updated Review
,”
Meas. Sci. Technol.
,
32
(
11
), p.
112001
.
19.
Gaikwad
,
A.
,
Williams
,
R. J.
,
de Winton
,
H.
,
Bevans
,
B. D.
,
Smoqi
,
Z.
,
Rao
,
P.
, and
Hooper
,
P. A.
,
2022
, “
Multi Phenomena Melt Pool Sensor Data Fusion for Enhanced Process Monitoring of Laser Powder Bed Fusion Additive Manufacturing
,”
Mater. Des.
,
221
, p.
110919
.
20.
Spears
,
T. G.
, and
Gold
,
S. A.
,
2016
, “
In-Process Sensing in Selective Laser Melting (SLM) Additive Manufacturing
,”
Integr. Mater. Manuf. Innov.
,
5
(
1
), pp.
16
40
.
21.
Smoqi
,
Z.
,
Gaikwad
,
A.
,
Bevans
,
B.
,
Kobir
,
M. H.
,
Craig
,
J.
,
Abul-Haj
,
A.
,
Peralta
,
A.
, and
Rao
,
P.
,
2022
, “
Monitoring and Prediction of Porosity in Laser Powder Bed Fusion Using Physics-Informed Meltpool Signatures and Machine Learning
,”
J. Mater. Process. Technol.
,
304
, p.
117550
.
22.
Ansari
,
M. A.
,
Crampton
,
A.
, and
Parkinson
,
S.
,
2022
, “
A Layer-Wise Surface Deformation Defect Detection by Convolutional Neural Networks in Laser Powder-Bed Fusion Images
,”
Materials
,
15
(
20
), p.
7166
.
23.
Wang
,
C.
,
Tan
,
X. P.
,
Tor
,
S. B.
, and
Lim
,
C. S.
,
2020
, “
Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives
,”
Addit. Manuf.
,
36
, p.
101538
.
24.
Schwerz
,
C.
, and
Nyborg
,
L.
,
2021
, “
Linking In Situ Melt Pool Monitoring to Melt Pool Size Distributions and Internal Flaws in Laser Powder Bed Fusion
,”
Metals
,
11
(
11
), p.
1856
.
25.
Mahmoud
,
D.
,
Magolon
,
M.
,
Boer
,
J.
,
Elbestawi
,
M. A.
, and
Mohammadi
,
M. G.
,
2021
, “
Applications of Machine Learning in Process Monitoring and Controls of L-PBF Additive Manufacturing: A Review
,”
Appl. Sci.
,
11
(
24
), p.
11910
.
26.
Kim
,
J.
,
Lee
,
S.
,
Hong
,
J.-K.
,
Kang
,
N.
, and
Choi
,
Y. S.
,
2020
, “
Calibration of Laser Penetration Depth and Absorptivity in Finite Element Method Based Modeling of Powder Bed Fusion Melt Pools
,”
Met. Mater. Int.
,
26
(
6
), pp.
891
902
.
27.
Riensche
,
A. R.
,
Bevans
,
B. D.
,
King
,
G.
,
Krishnan
,
A.
,
Cole
,
K. D.
, and
Rao
,
P.
,
2024
, “
Predicting Meltpool Depth and Primary Dendritic Arm Spacing in Laser Powder Bed Fusion Additive Manufacturing Using Physics-Based Machine Learning
,”
Mater. Des.
,
237
, p.
112540
.
28.
Snow
,
Z.
,
Nassar
,
A. R.
, and
Reutzel
,
E. W.
,
2020
, “
Invited Review Article: Review of the Formation and Impact of Flaws in Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
36
, p.
101457
.
29.
Li
,
E.
,
Zhou
,
Z.
,
Wang
,
L.
,
Zou
,
R.
, and
Yu
,
A.
,
2022
, “
Numerical Studies of Melt Pool and Gas Bubble Dynamics in Laser Powder Bed Fusion Process
,”
Addit. Manuf.
,
56
, p.
102913
.
30.
Chen
,
H.
,
Patel
,
S.
,
Vlasea
,
M.
, and
Zou
,
Y.
,
2022
, “
Enhanced Tensile Ductility of an Additively Manufactured AlSi10Mg Alloy by Reducing the Density of Melt Pool Boundaries
,”
Scr. Mater.
,
221
, p.
114954
.
31.
Keshavarzkermani
,
A.
,
Marzbanrad
,
E.
,
Esmaeilizadeh
,
R.
,
Mahmoodkhani
,
Y.
,
Ali
,
U.
,
Enrique
,
P. D.
,
Zhou
,
N. Y.
,
Bonakdar
,
A.
, and
Toyserkani
,
E.
,
2019
, “
An Investigation Into the Effect of Process Parameters on Melt Pool Geometry, Cell Spacing, and Grain Refinement During Laser Powder Bed Fusion
,”
Opt. Laser Technol.
,
116
, pp.
83
91
.
32.
Smith
,
W. L.
,
Roehling
,
J. D.
,
Strantza
,
M.
,
Ganeriwala
,
R. K.
,
Ashby
,
A. S.
,
Vrancken
,
B.
,
Clausen
,
B.
, et al
,
2021
, “
Residual Stress Analysis of In Situ Surface Layer Heating Effects on Laser Powder Bed Fusion of 316L Stainless Steel
,”
Addit. Manuf.
,
47
, p.
102252
.
33.
Ioannidou
,
C.
,
König
,
H.-H.
,
Semjatov
,
N.
,
Ackelid
,
U.
,
Staron
,
P.
,
Körner
,
C.
,
Hedström
,
P.
, and
Lindwall
,
G.
,
2022
, “
In-Situ Synchrotron X-Ray Analysis of Metal Additive Manufacturing: Current State, Opportunities and Challenges
,”
Mater. Des.
,
219
, p.
110790
.
34.
Wang
,
R.
,
Garcia
,
D.
,
Kamath
,
R. R.
,
Dou
,
C.
,
Ma
,
X.
,
Shen
,
B.
,
Choo
,
H.
,
Fezzaa
,
K.
,
Yu
,
H. Z.
, and
Kong
,
Z.
,
2022
, “
In Situ Melt Pool Measurements for Laser Powder Bed Fusion Using Multi Sensing and Correlation Analysis
,”
Sci. Rep.
,
12
(
1
), p.
13716
.
35.
Ren
,
Z.
,
Gao
,
L.
,
Clark
,
S. J.
,
Fezzaa
,
K.
,
Shevchenko
,
P.
,
Choi
,
A.
,
Everhart
,
W.
,
Rollett
,
A. D.
,
Chen
,
L.
, and
Sun
,
T.
,
2023
, “
Machine Learning-Aided Real-Time Detection of Keyhole Pore Generation in Laser Powder Bed Fusion
,”
Science
,
379
(
6627
), pp.
89
94
.
36.
König
,
H.-H.
,
Semjatov
,
N.
,
Spartacus
,
G.
,
Bidola
,
P.
,
Ioannidou
,
C.
,
Ye
,
J.
,
Renner
,
J.
, et al
,
2023
, “
MiniMelt: An Instrument for Real-Time Tracking of Electron Beam Additive Manufacturing Using Synchrotron X-Ray Techniques
,”
Rev. Sci. Instrum.
,
94
(
12
), p.
125103
.
37.
Blodgett
,
M. P.
, and
Nagy
,
P. B.
,
2004
, “
Eddy Current Assessment of Near-Surface Residual Stress in Shot-Peened Nickel-Base Superalloys
,”
J. Nondestr. Eval.
,
23
(
3
), pp.
107
123
.
38.
Petrich
,
J.
,
Snow
,
Z.
,
Corbin
,
D.
, and
Reutzel
,
E. W.
,
2021
, “
Multi-modal Sensor Fusion With Machine Learning for Data-Driven Process Monitoring for Additive Manufacturing
,”
Addit. Manuf.
,
48
, p.
102364
.
39.
Du
,
W.
,
Bai
,
Q.
,
Wang
,
Y.
, and
Zhang
,
B.
,
2018
, “
Eddy Current Detection of Subsurface Defects for Additive/Subtractive Hybrid Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
95
(
9
), pp.
3185
3195
.
40.
Kobayashi
,
N.
,
Yamamoto
,
S.
,
Sugawara
,
A.
,
Nakane
,
M.
,
Tsuji
,
D.
,
Hino
,
T.
,
Terada
,
T.
, and
Ochiai
,
M.
,
2019
, “
Fundamental Experiments of Eddy Current Testing for Additive Manufacturing Metallic Material Toward In-Process Inspection
,”
AIP Conf. Proc.
,
2102
(
1
), p.
070003
.
41.
Park
,
D.-G.
,
Angani
,
C. S.
,
Rao
,
B. P. C.
,
Vértesy
,
G.
,
Lee
,
D.-H.
, and
Kim
,
K.-H.
,
2013
, “
Detection of the Subsurface Cracks in a Stainless Steel Plate Using Pulsed Eddy Current
,”
J. Nondestr. Eval.
,
32
(
4
), pp.
350
353
.
42.
Caprio
,
L.
,
Demir
,
A. G.
, and
Previtali
,
B.
,
2020
, “
Observing Molten Pool Surface Oscillations During Keyhole Processing in Laser Powder Bed Fusion as a Novel Method to Estimate the Penetration Depth
,”
Addit. Manuf.
,
36
, p.
101470
.
43.
Lee
,
D. E.
,
Hwang
,
I.
,
Valente
,
C. M. O.
,
Oliveira
,
J. F. G.
, and
Dornfeld
,
D. A.
,
2006
, “Precision Manufacturing Process Monitoring With Acoustic Emission,”
Condition Monitoring and Control for Intelligent Manufacturing
,
L.
Wang
, and
R. X.
Gao
, eds.,
Springer London
,
London
, pp.
33
54
.
44.
Rao
,
P.
,
Bukkapatnam
,
S.
,
Beyca
,
O.
,
Kong
,
Z.
, and
Komanduri
,
R.
,
2014
, “
Real-Time Identification of Incipient Surface Morphology Variations in Ultraprecision Machining Process
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021008
.
45.
Bukkapatnam
,
S. T. S.
,
Kumara
,
S. R. T.
, and
Lakhtakia
,
A.
,
1999
, “
Analysis of Acoustic Emission Signals in Machining
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
568
576
.
46.
Li
,
Z.
,
Zou
,
X.
,
Bao
,
F.
,
Gu
,
F.
, and
Ball
,
A. D.
,
2023
, “A Review of Acoustic Emission Monitoring on Additive Manufacturing,”
Proceedings of IncoME-VI and TEPEN 2021
,
H.
Zhang
,
G.
Feng
,
H.
Wang
,
F.
Gu
, and
J. K.
Sinha
, eds.,
Springer International Publishing
,
Cham
, pp.
867
878
.
47.
Wadley
,
H. N. G.
, and
Mehrabian
,
R.
,
1984
, “
Acoustic Emission for Materials Processing: A Review
,”
Mater. Sci. Eng.
,
65
(
2
), pp.
245
263
.
48.
McLaskey
,
G. C.
, and
Glaser
,
S. D.
,
2012
, “
Acoustic Emission Sensor Calibration for Absolute Source Measurements
,”
J. Nondestr. Eval.
,
31
(
2
), pp.
157
168
.
49.
Williams
,
J.
,
Dryburgh
,
P.
,
Clare
,
A.
,
Rao
,
P.
, and
Samal
,
A.
,
2018
, “
Defect Detection and Monitoring in Metal Additive Manufactured Parts Through Deep Learning of Spatially Resolved Acoustic Spectroscopy Signals
,”
Smart Sustain. Manuf. Syst.
,
2
(
1
), pp.
204
226
.
50.
Gutknecht
,
K.
,
Cloots
,
M.
,
Sommerhuber
,
R.
, and
Wegener
,
K.
,
2021
, “
Mutual Comparison of Acoustic, Pyrometric and Thermographic Laser Powder Bed Fusion Monitoring
,”
Mater. Des.
,
210
, p.
110036
.
51.
Moore
,
K.
,
Kouprianoff
,
D.
,
Louw
,
D.
,
Yadroitsava
,
I.
, and
Yadroitsev
,
I.
,
2023
, “
Monitoring for Cracks in Metal l-PBF Using Gas-Borne Acoustic Emission
,”
S. Afr. J. Ind. Eng.
,
34
(
4
), pp.
147
154
.
52.
Pandiyan
,
V.
,
Wróbel
,
R.
,
Richter
,
R. A.
,
Leparoux
,
M.
,
Leinenbach
,
C.
, and
Shevchik
,
S.
,
2024
, “
Monitoring of Laser Powder Bed Fusion Process by Bridging Dissimilar Process Maps Using Deep Learning-Based Domain Adaptation on Acoustic Emissions
,”
Addit. Manuf.
,
80
, p.
103974
.
53.
Pandiyan
,
V.
,
Wróbel
,
R.
,
Leinenbach
,
C.
, and
Shevchik
,
S.
,
2023
, “
Optimizing In-Situ Monitoring for Laser Powder Bed Fusion Process: Deciphering Acoustic Emission and Sensor Sensitivity With Explainable Machine Learning
,”
J. Mater. Process. Technol.
,
321
, p.
118144
.
54.
Dornfeld
,
D.
,
1992
, “
Application of Acoustic Emission Techniques in Manufacturing
,”
NDTE Int.
,
25
(
6
), pp.
259
269
.
55.
Scruby
,
C. B.
,
1987
, “
An Introduction to Acoustic Emission
,”
J. Phys. E: Sci. Instrum.
,
20
(
8
), p.
946
.
56.
Chen
,
X.
,
Tang
,
J.
, and
Dornfeld
,
D.
,
1996
, “
Monitoring and Analysis of Ultraprecision Metal Cutting With Acoustic Emission
,”
Proceedings of the ASME 1996 International Mechanical Engineering Congress and Exposition
,
Atlanta, GA
, Nov. 17–22, pp.
387
393
.
57.
Lee
,
Y.
,
Chang
,
A. K.
, and
Dornfeld
,
D. A.
,
2002
, “
Acoustic Emission Monitoring for the Diamond Machining of Oxygen-Free High-Conductivity Copper
,”
J. Mater. Process. Technol.
,
127
(
2
), pp.
199
205
.
58.
Koester
,
L. W.
,
Bond
,
L. J.
,
Taheri
,
H.
, and
Collins
,
P. C.
,
2019
,
Additive Manufacturing for the Aerospace Industry
,
F.
Froes
,
R.
Boyer
, eds.,
Elsevier
,
Oxford, UK
, pp.
401
417
.
59.
Taheri
,
H.
,
Shoaib
,
M. R. B. M.
,
Koester
,
L. W.
,
Bigelow
,
T. A.
,
Collins
,
P. C.
, and
Bond
,
L. J.
,
2017
, “
Powder-Based Additive Manufacturing—A Review of Types of Defects, Generation Mechanisms, Detection, Property Evaluation and Metrology
,”
Int. J. Addit. Subtract. Manuf.
,
1
(
2
), pp.
172
209
.
60.
Liu
,
H.
,
Gobert
,
C.
,
Ferguson
,
K.
,
Abranovic
,
B.
,
Chen
,
H.
,
Beuth
,
J. L.
,
Rollett
,
A. D.
, and
Kara
,
L. B.
,
2024
, “
Inference of Highly Time-Resolved Melt Pool Visual Characteristics and Spatially-Dependent Lack-of-Fusion Defects in Laser Powder Bed Fusion Using Acoustic and Thermal Emission Data
,”
Addit. Manuf.
,
83
, p.
104057
.
61.
Prem
,
P. R.
,
Sanker
,
A. P.
,
Sebastian
,
S.
, and
Kaliyavaradhan
,
S. K.
,
2023
, “
A Review on Application of Acoustic Emission Testing During Additive Manufacturing
,”
J. Nondestr. Eval.
,
42
(
4
), pp.
96
.
62.
Mohammadi
,
M. G.
, and
Elbestawi
,
M.
,
2020
, “
Real Time Monitoring in L-PBF Using a Machine Learning Approach
,”
Procedia Manuf.
,
51
, pp.
725
731
.
63.
Ghayoomi Mohammadi
,
M.
,
Mahmoud
,
D.
, and
Elbestawi
,
M.
,
2021
, “
On the Application of Machine Learning for Defect Detection in L-PBF Additive Manufacturing
,”
Opt. Laser Technol.
,
143
, p.
107338
.
64.
Eschner
,
N.
,
Weiser
,
L.
,
Häfner
,
B.
, and
Lanza
,
G.
,
2020
, “
Classification of Specimen Density in Laser Powder Bed Fusion (L-PBF) Using In-Process Structure-Borne Acoustic Process Emissions
,”
Addit. Manuf.
,
34
, p.
101324
.
65.
Plotnikov
,
Y.
,
Henkel
,
D.
,
Burdick
,
J.
,
French
,
A.
,
Sions
,
J.
, and
Bourne
,
K.
,
2019
, “
Infrared-Assisted Acoustic Emission Process Monitoring for Additive Manufacturing
,”
AIP Conf. Proc.
,
2102
(
1
), p.
020006
.
66.
Kononenko
,
D. Y.
,
Nikonova
,
V.
,
Seleznev
,
M.
,
van den Brink
,
J.
, and
Chernyavsky
,
D.
,
2023
, “
An In Situ Crack Detection Approach in Additive Manufacturing Based on Acoustic Emission and Machine Learning
,”
Addit. Manuf. Lett.
,
5
, pp.
100130
.
67.
Dalela
,
S.
,
Balaji
,
P. S.
, and
Jena
,
D. P.
,
2022
, “
A Review on Application of Mechanical Metamaterials for Vibration Control
,”
Mech. Adv. Mater. Struct.
,
29
(
22
), pp.
3237
3262
.
68.
Muktadir
,
M. A.
,
Hasan
,
M. N.
, and
Alam
,
M.
,
2022
, “
Additive Manufacturing and Acoustic Emission: A Brief Review
,”
J. Addit. Manuf. Technol.
,
2
(
1
), pp.
632
632
.
69.
Sifuzzaman
,
M.
,
Islam
,
M. R.
, and
Ali
,
M. Z.
,
2009
, “
Application of Wavelet Transform and its Advantages Compared to Fourier Transform
,”
J. Phys. Sci.
,
13
, pp.
121
134
.
70.
Shevchik
,
S. A.
,
Kenel
,
C.
,
Leinenbach
,
C.
, and
Wasmer
,
K.
,
2018
, “
Acoustic Emission for In Situ Quality Monitoring in Additive Manufacturing Using Spectral Convolutional Neural Networks
,”
Addit. Manuf.
,
21
, pp.
598
604
.
71.
Shevchik
,
S. A.
,
Masinelli
,
G.
,
Kenel
,
C.
,
Leinenbach
,
C.
, and
Wasmer
,
K.
,
2019
, “
Deep Learning for In Situ and Real-Time Quality Monitoring in Additive Manufacturing Using Acoustic Emission
,”
IEEE Trans. Ind. Inf.
,
15
(
9
), pp.
5194
5203
.
72.
Wasmer
,
K.
,
Le-Quang
,
T.
,
Meylan
,
B.
, and
Shevchik
,
S. A.
,
2019
, “
In Situ Quality Monitoring in AM Using Acoustic Emission: A Reinforcement Learning Approach
,”
J. Mater. Eng. Perform.
,
28
(
2
), pp.
666
672
.
73.
Smith
,
R. J.
,
Hirsch
,
M.
,
Patel
,
R.
,
Li
,
W.
,
Clare
,
A. T.
, and
Sharples
,
S. D.
,
2016
, “
Spatially Resolved Acoustic Spectroscopy for Selective Laser Melting
,”
J. Mater. Process. Technol.
,
236
, pp.
93
102
.
74.
Clark
,
M.
,
Clare
,
A.
,
Dryburgh
,
P.
,
Li
,
W.
,
Patel
,
R.
,
Pieris
,
D.
,
Sharples
,
S.
, and
Smith
,
R.
,
2019
, “
Spatially Resolved Acoustic Spectroscopy (SRAS) Microstructural Imaging
,”
AIP Conf. Proc.
,
2102
(
1
), p.
020001
.
75.
Dryburgh
,
P.
,
Patel
,
R.
,
Pieris
,
D. M.
,
Hirsch
,
M.
,
Li
,
W.
,
Sharples
,
S. D.
,
Smith
,
R. J.
,
Clare
,
A. T.
, and
Clark
,
M.
,
2019
, “
Spatially Resolved Acoustic Spectroscopy for Texture Imaging in Powder Bed Fusion Nickel Superalloys
,”
AIP Conf. Proc.
,
2102
(
1
), p.
020004
.
76.
Riensche
,
A.
,
Bevans
,
B. D.
,
Smoqi
,
Z.
,
Yavari
,
R.
,
Krishnan
,
A.
,
Gilligan
,
J.
,
Piercy
,
N.
,
Cole
,
K.
, and
Rao
,
P.
,
2022
, “
Feedforward Control of Thermal History in Laser Powder Bed Fusion: Toward Physics-Based Optimization of Processing Parameters
,”
Mater. Des.
,
224
, p.
111351
.
77.
Yavari
,
R.
,
Smoqi
,
Z.
,
Riensche
,
A.
,
Bevans
,
B.
,
Kobir
,
H.
,
Mendoza
,
H.
,
Song
,
H.
,
Cole
,
K.
, and
Rao
,
P.
,
2021
, “
Part-Scale Thermal Simulation of Laser Powder Bed Fusion Using Graph Theory: Effect of Thermal History on Porosity, Microstructure Evolution, and Recoater Crash
,”
Mater. Des.
,
204
, pp.
109685
.
78.
Plotnikov
,
Y.
,
Henkel
,
D.
,
Burdick
,
J.
, and
Bourne
,
K.
,
2020
, “
Synchronous Multi-sensor Monitoring for Additive Manufacturing
,”
Mater. Eval.
,
78
(
2
), pp.
193
202
.
79.
Cruz
,
V.
,
Qiu
,
Y.
,
Birbilis
,
N.
, and
Thomas
,
S.
,
2022
, “
Stress Corrosion Cracking of 316L Manufactured by Laser Powder Bed Fusion in 6% Ferric Chloride Solution
,”
Corros. Sci.
,
207
, p.
110535
.
80.
Ahmed
,
N.
,
Barsoum
,
I.
,
Haidemenopoulos
,
G.
, and
Al-Rub
,
R. K. A.
,
2022
, “
Process Parameter Selection and Optimization of Laser Powder Bed Fusion for 316L Stainless Steel: A Review
,”
J. Manuf. Process.
,
75
, pp.
415
434
.
81.
Yang
,
T.
,
Liu
,
T.
,
Liao
,
W.
,
Wei
,
H.
,
Zhang
,
C.
,
Chen
,
X.
, and
Zhang
,
K.
,
2021
, “
Effect of Processing Parameters on Overhanging Surface Roughness During Laser Powder Bed Fusion of AlSi10Mg
,”
J. Manuf. Process.
,
61
, pp.
440
453
.
82.
Benarji
,
K.
,
Ravi Kumar
,
Y.
,
Jinoop
,
A. N.
,
Paul
,
C. P.
, and
Bindra
,
K. S.
,
2021
, “
Effect of Heat-Treatment on the Microstructure, Mechanical Properties and Corrosion Behaviour of SS 316 Structures Built by Laser Directed Energy Deposition Based Additive Manufacturing
,”
Met. Mater. Int.
,
27
(
3
), pp.
488
499
.
83.
Igata
,
N.
,
Miyahara
,
K.
,
Uda
,
T.
, and
Asada
,
S.
,
1986
, “Effects of Specimen Thickness and Grain Size on the Mechanical Properties of Types 304 and 316 Austenitic Stainless Steel, the Use of Small-Scale Specimens for Testing Irradiated Material,” ASTM International.
84.
Basu
,
K.
,
Das
,
M.
,
Bhattacharjee
,
D.
, and
Chakraborti
,
P. C.
,
2007
, “
Effect of Grain Size on Austenite Stability and Room Temperature Low Cycle Fatigue Behaviour of Solution Annealed AISI 316LN Austenitic Stainless Steel
,”
Mater. Sci. Technol.
,
23
(
11
), pp.
1278
1284
.
85.
Zhang
,
H.
,
Li
,
C.
,
Guo
,
Q.
,
Ma
,
Z.
,
Li
,
H.
, and
Liu
,
Y.
,
2019
, “
Improving Creep Resistance of Nickel-Based Superalloy Inconel 718 by Tailoring Gamma Double Prime Variants
,”
Scr. Mater.
,
164
, pp.
66
70
.
86.
Elangeswaran
,
C.
,
Cutolo
,
A.
,
Gallas
,
S.
,
Dinh
,
T. D.
,
Lammens
,
N.
,
Erdelyi
,
H.
,
Schulz
,
M.
, et al
,
2022
, “
Predicting Fatigue Life of Metal LPBF Components by Combining a Large Fatigue Database for Different Sample Conditions With Novel Simulation Strategies
,”
Addit. Manuf.
,
50
, p.
102570
.
87.
Rhif
,
M.
,
Ben Abbes
,
A.
,
Farah
,
I. R.
,
Martínez
,
B.
, and
Sang
,
Y.
,
2019
, “
Wavelet Transform Application for/in Non-stationary Time-Series Analysis: A Review
,”
Appl. Sci.
,
9
(
7
), p.
1345
.
88.
Shensa
,
M. J.
,
1992
, “
The Discrete Wavelet Transform: Wedding the a Trous and Mallat Algorithms
,”
IEEE Trans. Signal Process.
,
40
(
10
), pp.
2464
2482
.
89.
Bevans
,
B.
,
Ramalho
,
A.
,
Smoqi
,
Z.
,
Gaikwad
,
A.
,
Santos
,
T. G.
,
Rao
,
P.
, and
Oliveira
,
J. P.
,
2023
, “
Monitoring and Flaw Detection During Wire-Based Directed Energy Deposition Using In-Situ Acoustic Sensing and Wavelet Graph Signal Analysis
,”
Mater. Des.
,
225
, p.
111480
.
90.
Chowdhury
,
S.
,
Yadaiah
,
N.
,
Prakash
,
C.
,
Ramakrishna
,
S.
,
Dixit
,
S.
,
Gupta
,
L. R.
, and
Buddhi
,
D.
,
2022
, “
Laser Powder Bed Fusion: A State-of-the-Art Review of the Technology, Materials, Properties & Defects, and Numerical Modelling
,”
J. Mater. Res. Technol.
,
20
, pp.
2109
2172
.
91.
Bevans
,
B.
,
Barrett
,
C.
,
Spears
,
T.
,
Gaikwad
,
A.
,
Riensche
,
A.
,
Smoqi
,
Z.
,
Halliday
,
H.
, and
Rao
,
P.
,
2023
, “
Heterogeneous Sensor Data Fusion for Multiscale, Shape Agnostic Flaw Detection in Laser Powder Bed Fusion Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
18
(
1
), p.
e2196266
.
92.
Kobir
,
M. H.
,
Yavari
,
R.
,
Riensche
,
A. R.
,
Bevans
,
B. D.
,
Castro
,
L.
,
Cole
,
K. D.
, and
Rao
,
P.
,
2023
, “
Prediction of Recoater Crash in Laser Powder Bed Fusion Additive Manufacturing Using Graph Theory Thermomechanical Modeling
,”
Prog. Addit. Manuf.
,
8
(
3
), pp.
355
380
.
93.
Diegel
,
O.
, and
Wohlers
,
T.
,
2019
, “
Understanding Build Failures in Laser Powder Bed Fusion: An Overview
,”
Metal AM
,
5
(
1
), pp.
155
159
.
94.
Liu
,
Y.
,
Li
,
J.
,
Xu
,
K.
,
Cheng
,
T.
,
Zhao
,
D.
,
Li
,
W.
,
Teng
,
Q.
, and
Wei
,
Q.
,
2022
, “
An Optimized Scanning Strategy to Mitigate Excessive Heat Accumulation Caused by Short Scanning Lines in Laser Powder Bed Fusion Process
,”
Addit. Manuf.
,
60
, p.
103256
.
95.
Rott
,
S.
,
Ladewig
,
A.
,
Friedberger
,
K.
,
Casper
,
J.
,
Full
,
M.
, and
Schleifenbaum
,
J. H.
,
2020
, “
Surface Roughness in Laser Powder Bed Fusion—Interdependency of Surface Orientation and Laser Incidence
,”
Addit. Manuf.
,
36
, p.
101437
.
96.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.
97.
Jeyaprakash
,
N.
,
Saravana Kumar
,
M.
,
Yang
,
C.-H.
,
Cheng
,
Y.
,
Radhika
,
N.
, and
Sivasankaran
,
S.
,
2024
, “
Effect of Microstructural Evolution During Melt Pool Formation on Nano-mechanical Properties in LPBF Based SS316L Parts
,”
J. Alloys Compd.
,
972
, p.
172745
.
98.
Raghavan
,
N.
,
Simunovic
,
S.
,
Dehoff
,
R.
,
Plotkowski
,
A.
,
Turner
,
J.
,
Kirka
,
M.
, and
Babu
,
S.
,
2017
, “
Localized Melt-Scan Strategy for Site Specific Control of Grain Size and Primary Dendrite Arm Spacing in Electron Beam Additive Manufacturing
,”
Acta Mater.
,
140
, pp.
375
387
.
99.
Baker
,
B. W.
,
McNelley
,
T. R.
, and
Brewer
,
L. N.
,
2014
, “
Grain Size and Particle Dispersion Effects on the Tensile Behavior of Friction Stir Welded MA956 Oxide Dispersion Strengthened Steel From Low to Elevated Temperatures
,”
Mater. Sci. Eng. A
,
589
, pp.
217
227
.
You do not currently have access to this content.