Abstract

Large volumetric changes during lithiation and delithiation of high-energy-density active materials, together with variations in mechanical properties associated with water-based binders, exacerbate problems relating to loss of contact between the active materials and metallic current collectors in Li-ion battery electrodes. Laser texturing has been proposed as a possible solution to the problem, representing an alternative to chemical surface treatments. To facilitate the evaluation of this process, the present work seeks to characterize mechanical adhesion between active materials with carboxymethylcellulose (CMC) binder and aluminum and copper current collectors, providing information linking laser processing parameters, surface topography, and oxide formation to adhesion. Experiments were performed with a 104-ns pulsed fiber laser, varying the pulse fluence and separation distance in both the scanning and lateral directions. Topography analysis revealed values of interfacial area ratio (Sdr) in the range of 21–53% for laser-textured current collectors. Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) analysis showed oxygen content in the range of 4–13 at% for laser-textured current collectors compared to 1.5–2.1 at% for untextured materials. Mechanical scratch tests revealed large increases in mechanical adhesion between the active material and current collectors of complete electrodes after laser texturing of the latter, with the critical load increasing from 2 N to more than 4 N (maximum: 5.3 N) for cathodes and from 2.3 N to more than 9 N (maximum 12.7 N) for anodes.

References

1.
Balali
,
Y.
, and
Stegen
,
S.
,
2021
, “
Review of Energy Storage Systems for Vehicles Based on Technology, Environmental Impacts, and Costs
,”
Renewable Sustainable Energy Rev.
,
135
(
1
), p.
110185
.
2.
Kittner
,
N.
,
Lill
,
F.
, and
Kammen
,
D. M.
,
2017
, “
Energy Storage Deployment and Innovation for the Clean Energy Transition
,”
Nat. Energy
,
2
(
9
), p.
17125
.
3.
Grey
,
C. P.
, and
Hall
,
D. S.
,
2020
, “
Prospects for Lithium-Ion Batteries and Beyond—A 2030 Vision
,”
Nat. Commun.
,
11
(
1
), p.
6279
.
4.
Hasan
,
M. K.
,
Mahmud
,
M.
,
Ahasan Habib
,
A. K. M.
,
Motakabber
,
S. M. A.
, and
Islam
,
S.
,
2021
, “
Review of Electric Vehicle Energy Storage and Management System: Standards, Issues, and Challenges
,”
J. Energy Storage
,
41
(
1
), p.
102940
.
5.
Adu-Gyamfi
,
B. A.
, and
Good
,
C.
,
2022
, “
Electric Aviation: A Review of Concepts and Enabling Technologies
,”
Transp. Eng.
,
9
(
1
), p.
100134
.
6.
Dühnen
,
S.
,
Betz
,
J.
,
Kolek
,
M.
,
Schmuch
,
R.
,
Winter
,
M.
, and
Placke
,
T.
,
2020
, “
Toward Green Battery Cells: Perspective on Materials and Technologies
,”
Small Methods
,
4
(
7
), p.
2000039
.
7.
Liang
,
G.
,
Peterson
,
V. K.
,
See
,
K. W.
,
Guo
,
Z.
, and
Pang
,
W. K.
,
2020
, “
Developing High-Voltage Spinel LiNi 0.5 Mn 1.5 O 4 Cathodes for High-Energy-Density Lithium-Ion Batteries: Current Achievements and Future Prospects
,”
J. Mater. Chem. A
,
8
(
31
), pp.
15373
15398
.
8.
Duffner
,
F.
,
Kronemeyer
,
N.
,
Tübke
,
J.
,
Leker
,
J.
,
Winter
,
M.
, and
Schmuch
,
R.
,
2021
, “
Post-Lithium-Ion Battery Cell Production and Its Compatibility With Lithium-Ion Cell Production Infrastructure
,”
Nat. Energy
,
6
(
2
), pp.
123
134
.
9.
Jeschull
,
F.
,
Brandell
,
D.
,
Wohlfahrt-Mehrens
,
M.
, and
Memm
,
M.
,
2017
, “
Water-Soluble Binders for Lithium-Ion Battery Graphite Electrodes: Slurry Rheology, Coating Adhesion, and Electrochemical Performance
,”
Energy Technol.
,
5
(
11
), pp.
2108
2118
.
10.
Shen
,
K.
,
Zhai
,
Q.
,
Gu
,
Y.
,
Wang
,
W.
,
Cao
,
H.
,
Hauschild
,
M.
, and
Yuan
,
C.
,
2023
, “
Life Cycle Assessment of Lithium Ion Battery From Water-Based Manufacturing for Electric Vehicles
,”
Resour. Conserv. Recycl.
,
198
(
1
), p.
107152
.
11.
Yuan
,
C.
,
Cao
,
H.
,
Shen
,
K.
,
Deng
,
Y.
,
Zeng
,
D.
,
Dong
,
Y.
, and
Hauschild
,
M.
,
2021
, “
Water-Based Manufacturing of Lithium Ion Battery for Life Cycle Impact Mitigation
,”
CIRP Ann.
,
70
(
1
), pp.
25
28
.
12.
Kirsch
,
D. J.
,
Lacey
,
S. D.
,
Kuang
,
Y.
,
Pastel
,
G.
,
Xie
,
H.
,
Connell
,
J. W.
,
Lin
,
Y.
, and
Hu
,
L.
,
2019
, “
Scalable Dry Processing of Binder-Free Lithium-Ion Battery Electrodes Enabled by Holey Graphene
,”
ACS Appl. Energy Mater.
,
2
(
5
), pp.
2990
2997
.
13.
Wang
,
Y.
,
An
,
N.
,
Wen
,
L.
,
Wang
,
L.
,
Jiang
,
X.
,
Hou
,
F.
,
Yin
,
Y.
, and
Liang
,
J.
,
2021
, “
Recent Progress on the Recycling Technology of Li-Ion Batteries
,”
J. Energy Chem.
,
55
(
1
), pp.
391
419
.
14.
Fan
,
E.
,
Li
,
L.
,
Wang
,
Z.
,
Lin
,
J.
,
Huang
,
Y.
,
Yao
,
Y.
,
Chen
,
R.
, and
Wu
,
F.
,
2020
, “
Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects
,”
Chem. Rev.
,
120
(
14
), pp.
7020
7063
.
15.
Tan
,
J.
,
Wang
,
Q.
,
Chen
,
S.
,
Li
,
Z.
,
Sun
,
J.
,
Liu
,
W.
,
Yang
,
W.
,
Xiang
,
X.
,
Sun
,
X.
, and
Duan
,
X.
,
2021
, “
Recycling-Oriented Cathode Materials Design for Lithium-Ion Batteries: Elegant Structures Versus Complicated Compositions
,”
Energy Storage Mater.
,
41
(
1
), pp.
380
394
.
16.
Frith
,
J. T.
,
Lacey
,
M. J.
, and
Ulissi
,
U.
,
2023
, “
A Non-Academic Perspective on the Future of Lithium-Based Batteries
,”
Nat. Commun.
,
14
(
1
), p.
420
.
17.
Chen
,
Y.
,
Kang
,
Y.
,
Zhao
,
Y.
,
Wang
,
L.
,
Liu
,
J.
,
Li
,
Y.
,
Liang
,
Z.
, et al
,
2021
, “
A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards
,”
J. Energy Chem.
,
59
(
1
), pp.
83
99
.
18.
Cui
,
D.
,
Wang
,
Z.
,
Liu
,
P.
,
Wang
,
S.
,
Dorrell
,
D. G.
,
Li
,
X.
, and
Zhan
,
W.
,
2023
, “
Operation Optimization Approaches of Electric Vehicle Battery Swapping and Charging Station: A Literature Review
,”
Energy
,
263
(
1
), p.
126095
.
19.
Guo
,
L.
,
Thornton
,
D. B.
,
Koronfel
,
M. A.
,
Stephens
,
I. E. L.
, and
Ryan
,
M. P.
,
2021
, “
Degradation in Lithium Ion Battery Current Collectors
,”
J. Phys. Energy
,
3
(
3
), p.
032015
.
20.
Fichtner
,
M.
,
Edström
,
K.
,
Ayerbe
,
E.
,
Berecibar
,
M.
,
Bhowmik
,
A.
,
Castelli
,
I. E.
,
Clark
,
S.
, et al
,
2022
, “
Rechargeable Batteries of the Future—The State of the Art From a BATTERY 2030+ Perspective
,”
Adv. Energy Mater.
,
12
(
17
), p.
2102904
.
21.
Kabir
,
M. M.
, and
Demirocak
,
D. E.
,
2017
, “
Degradation Mechanisms in Li-Ion Batteries: A State-of-the-Art Review: Degradation Mechanisms in Li-Ion Batteries: A State-of-the-Art Review
,”
Int. J. Energy Res.
,
41
(
14
), pp.
1963
1986
.
22.
Yang
,
Y.
,
Yuan
,
W.
,
Zhang
,
X.
,
Ke
,
Y.
,
Qiu
,
Z.
,
Luo
,
J.
,
Tang
,
Y.
,
Wang
,
C.
,
Yuan
,
Y.
, and
Huang
,
Y.
,
2020
, “
A Review on Structuralized Current Collectors for High-Performance Lithium-Ion Battery Anodes
,”
Appl. Energy
,
276
(
1
), p.
115464
.
23.
Lingappan
,
N.
,
Kong
,
L.
, and
Pecht
,
M.
,
2021
, “
The Significance of Aqueous Binders in Lithium-Ion Batteries
,”
Renewable Sustainable Energy Rev.
,
147
(
1
), p.
111227
.
24.
Li
,
P.
,
Kim
,
H.
,
Myung
,
S.-T.
, and
Sun
,
Y.-K.
,
2021
, “
Diverting Exploration of Silicon Anode Into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries
,”
Energy Storage Mater.
,
35
(
1
), pp.
550
576
.
25.
Jangid
,
M. K.
, and
Mukhopadhyay
,
A.
,
2019
, “
Real-Time Monitoring of Stress Development During Electrochemical Cycling of Electrode Materials for Li-Ion Batteries: Overview and Perspectives
,”
J. Mater. Chem. A
,
7
(
41
), pp.
23679
23726
.
26.
Yoon
,
S.
,
Jang
,
H.-S.
,
Kim
,
S.
,
Kim
,
J.
, and
Cho
,
K. Y.
,
2017
, “
Crater-Like Architectural Aluminum Current Collectors With Superior Electrochemical Performance for Li-Ion Batteries
,”
J. Electroanal. Chem.
,
797
(
1
), pp.
37
41
.
27.
Wang
,
Y.
,
Zhao
,
Z.
,
Zhong
,
J.
,
Wang
,
T.
,
Wang
,
L.
,
Xu
,
H.
,
Cao
,
J.
, et al
,
2022
, “
Hierarchically Micro/Nanostructured Current Collectors Induced by Ultrafast Femtosecond Laser Strategy for High-Performance Lithium-Ion Batteries
,”
Energy Environ. Mater.
,
5
(
3
), pp.
969
976
.
28.
Tang
,
X.
,
Liu
,
W.
,
Ye
,
B.
, and
Tang
,
Y.
,
2013
, “
Preparation of Current Collector With Blind Holes and Enhanced Cycle Performance of Silicon-Based Anode
,”
Trans. Nonferrous Met. Soc. China
,
23
(
6
), pp.
1723
1727
.
29.
Pfleging
,
W.
,
2018
, “
A Review of Laser Electrode Processing for Development and Manufacturing of Lithium-Ion Batteries
,”
Nanophotonics
,
7
(
3
), pp.
549
573
.
30.
Chianese
,
G.
,
Franciosa
,
P.
,
Nolte
,
J.
,
Ceglarek
,
D.
, and
Patalano
,
S.
,
2022
, “
Characterization of Photodiodes for Detection of Variations in Part-to-Part Gap and Weld Penetration Depth During Remote Laser Welding of Copper-to-Steel Battery Tab Connectors
,”
ASME J. Manuf. Sci. Eng.
,
144
(
7
), p.
071004
.
31.
Kumar
,
N.
,
Masters
,
I.
, and
Das
,
A.
,
2021
, “
In-Depth Evaluation of Laser-Welded Similar and Dissimilar Material Tab-to-Busbar Electrical Interconnects for Electric Vehicle Battery Pack
,”
J. Manuf. Processes
,
70
(
1
), pp.
78
96
.
32.
Liverani
,
E.
,
Angeloni
,
C.
,
Ascari
,
A.
, and
Fortunato
,
A.
,
2024
, “
Environmental Impact, Mechanical Properties, and Productivity: Considerations on Filler Wire and Scanning Strategy in Laser Welding
,”
ASME J. Manuf. Sci. Eng.
,
146
(
9
), p.
091005
.
33.
Pfleging
,
W.
,
2020
, “
Recent Progress in Laser Texturing of Battery Materials: A Review of Tuning Electrochemical Performances, Related Material Development, and Prospects for Large-Scale Manufacturing
,”
Int. J. Extreme Manuf.
,
3
(
1
), p.
012002
.
34.
Ravesio
,
E.
,
Lutey
,
A. H. A.
,
Versaci
,
D.
,
Romoli
,
L.
, and
Bodoardo
,
S.
,
2023
, “
Nanosecond Pulsed Laser Texturing of Li-Ion Battery Electrode Current Collectors: Electrochemical Characterisation of Cathode Half-Cells
,”
Sustainable Mater. Technol.
,
38
, p.
e00751
.
35.
Romoli
,
L.
,
Lutey
,
A. H. A.
, and
Lazzini
,
G.
,
2022
, “
Laser Texturing of Li-Ion Battery Electrode Current Collectors for Improved Active Layer Interface Adhesion
,”
CIRP Ann.
,
71
(
1
), pp.
481
484
.
36.
Lorazo
,
P.
,
Lewis
,
L. J.
, and
Meunier
,
M.
,
2006
, “
Thermodynamic Pathways to Melting, Ablation, and Solidification in Absorbing Solids Under Pulsed Laser Irradiation
,”
Phys. Rev. B
,
73
(
13
), p.
134108
.
37.
Porneala
,
C.
, and
Willis
,
D. A.
,
2009
, “
Time-Resolved Dynamics of Nanosecond Laser-Induced Phase Explosion
,”
J. Phys. Appl. Phys.
,
42
(
15
), p.
155503
.
38.
Narayanan
,
V.
,
Singh
,
R.
, and
Marla
,
D.
,
2024
, “
A 3D Computational Model of Nanosecond Pulsed Laser Texturing of Metals for Designing Engineered Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
146
(
5
), p.
051006
.
39.
Feng
,
Z.
,
Zhao
,
H.
,
Tan
,
C.
,
Zhu
,
B.
,
Xia
,
F.
,
Wang
,
Q.
,
Chen
,
B.
, and
Song
,
X.
,
2019
, “
Effect of Laser Texturing on the Surface Characteristics and Bonding Property of 30CrMnSiA Steel Adhesive Joints
,”
J. Manuf. Processes
,
47
(
1
), pp.
219
228
.
40.
Xu
,
C.
,
Xu
,
F.
,
Shi
,
L.
,
Gao
,
J.
,
Tu
,
L.
, and
Zuo
,
D.
,
2019
, “
Enhancement of Substrate-Coating Adherence of Boron-Doped Diamond Electrodes by Nanosecond Laser Surface Texturing Pretreatment
,”
Surf. Coat. Technol.
,
360
(
1
), pp.
196
204
.
41.
Zheng
,
Y.
,
An
,
Z.
,
Smyrek
,
P.
,
Seifert
,
H. J.
,
Kunze
,
T.
,
Lang
,
V.
,
Lasagni
,
A.-F.
, and
Pfleging
,
W.
,
2016
, “
Direct Laser Interference Patterning and Ultrafast Laser-Induced Micro/Nano Structuring of Current Collectors for Lithium-Ion Batteries
,”
Laser-Based Micro- and Nanoprocessing X
,
San Francisco, CA
,
Feb. 16–18
.
42.
Bonse
,
J.
,
Krüger
,
J.
,
Höhm
,
S.
, and
Rosenfeld
,
A.
,
2012
, “
Femtosecond Laser-Induced Periodic Surface Structures
,”
J. Laser Appl.
,
24
(
4
), p.
042006
.
43.
Hu
,
J.
,
Wang
,
Y.
,
Li
,
D.
, and
Cheng
,
Y.-T.
,
2018
, “
Effects of Adhesion and Cohesion on the Electrochemical Performance and Durability of Silicon Composite Electrodes
,”
J. Power Sources
,
397
(
1
), pp.
223
230
.
44.
Kierzek
,
K.
,
2016
, “
Influence of Binder Adhesion Ability on the Performance of Silicon/Carbon Composite as Li-Ion Battery Anode
,”
J. Mater. Eng. Perform.
,
25
(
6
), pp.
2326
2330
.
45.
Ibing
,
L.
,
Gallasch
,
T.
,
Schneider
,
P.
,
Niehoff
,
P.
,
Hintennach
,
A.
,
Winter
,
M.
, and
Schappacher
,
F. M.
,
2019
, “
Towards Water Based Ultra-Thick Li Ion Battery Electrodes—A Binder Approach
,”
J. Power Sources
,
423
(
1
), pp.
183
191
.
46.
Diehm
,
R.
,
Müller
,
M.
,
Burger
,
D.
,
Kumberg
,
J.
,
Spiegel
,
S.
,
Bauer
,
W.
,
Scharfer
,
P.
, and
Schabel
,
W.
,
2020
, “
High-Speed Coating of Primer Layer for Li-Ion Battery Electrodes by Using Slot-Die Coating
,”
Energy Technol.
,
8
(
9
), p.
2000259
.
47.
Hernandez
,
C. R.
,
Etiemble
,
A.
,
Douillard
,
T.
,
Mazouzi
,
D.
,
Karkar
,
Z.
,
Maire
,
E.
,
Guyomard
,
D.
,
Lestriez
,
B.
, and
Roué
,
L.
,
2018
, “
A Facile and Very Effective Method to Enhance the Mechanical Strength and the Cyclability of Si-Based Electrodes for Li-Ion Batteries
,”
Adv. Energy Mater.
,
8
(
6
), p.
1701787
.
48.
Bull
,
S. J.
, and
Berasetegui
,
E. G.
,
2006
, “
An Overview of the Potential of Quantitative Coating Adhesion Measurement by Scratch Testing
,”
Tribol. Int.
,
39
(
2
), pp.
99
114
.
49.
Burnett
,
P. J.
, and
Rickerby
,
D. S.
,
1987
, “
The Relationship Between Hardness and Scratch Adhesion
,”
Thin Solid Films
,
154
(
1–2
), pp.
403
416
.
50.
Charitidis
,
C.
,
Logothetidis
,
S.
, and
Gioti
,
M.
,
2000
, “
A Comparative Study of the Nanoscratching Behavior of Amorphous Carbon Films Grown Under Various Deposition Conditions
,”
Surf. Coat. Technol.
,
125
(
1–3
), pp.
201
206
.
51.
Nguyen
,
V. A.
,
Wang
,
J.
, and
Kuss
,
C.
,
2020
, “
Conducting Polymer Composites as Water-Dispersible Electrode Matrices for Li-Ion Batteries: Synthesis and Characterization
,”
J. Power Sources Adv.
,
6
(
1
), p.
100033
.
52.
Yoo
,
M.
,
Frank
,
C. W.
,
Mori
,
S.
, and
Yamaguchi
,
S.
,
2003
, “
Effect of Poly(Vinylidene Fluoride) Binder Crystallinity and Graphite Structure on the Mechanical Strength of the Composite Anode in a Lithium Ion Battery
,”
Polymer
,
44
(
15
), pp.
4197
4204
.
53.
International Organization for Standardization
,
2016
,
Geometrical Product Specifications (GPS) — Surface Texture: Areal
.
54.
Romoli
,
L.
,
Moroni
,
F.
, and
Khan
,
M. M. A.
,
2017
, “
A Study on the Influence of Surface Laser Texturing on the Adhesive Strength of Bonded Joints in Aluminium Alloys
,”
CIRP Ann.
,
66
(
1
), pp.
237
240
.
55.
Kim
,
W.-S.
,
Yun
,
I.-H.
,
Lee
,
J.-J.
, and
Jung
,
H.-T.
,
2010
, “
Evaluation of Mechanical Interlock Effect on Adhesion Strength of Polymer–Metal Interfaces Using Micro-Patterned Surface Topography
,”
Int. J. Adhes. Adhes.
,
30
(
6
), pp.
408
417
.
56.
Yoon
,
E.
,
Lee
,
J.
,
Byun
,
S.
,
Kim
,
D.
, and
Yoon
,
T.
,
2022
, “
Passivation Failure of Al Current Collector in LiPF 6 -Based Electrolytes for Lithium-Ion Batteries
,”
Adv. Funct. Mater.
,
32
(
22
), p.
2200026
.
57.
Du
,
P.
,
Wan
,
J.
,
Qu
,
J.
,
Xie
,
H.
,
Wang
,
D.
, and
Yin
,
H.
,
2024
, “
Passivation and Corrosion of Al Current Collectors in Lithium-Ion Batteries
,”
npj Mater. Degrad.
,
8
(
1
), p.
43
.
You do not currently have access to this content.