Abstract

Typical automobile assembly operations need thousands of resistance spot welding in series with closely spaced spots due to their complex structural designs. This inevitably leads to shunting-induced current diversion, adversely affecting weld quality. The extent of this shunting loss varies depending on parameters such as spot pitch and sheet thickness, making universal parameter optimization challenging. This study experimentally and numerically investigates the influence of shunting on nugget formation and joint strength, considering varying workpiece thicknesses and spot pitches. Results indicate that shunted welds experience up to 18% reduction in nugget area and 6% reduction in joint strength, with further reductions of up to 47% for thicker sheets and smaller spot pitches. To mitigate shunting effects, increasing the welding current in proportion to the loss of current density effectively restores nugget size and weld uniformity. The proposed solution and developed model offer a robust approach for industrial implementation, ensuring weld consistency and structural reliability in automotive applications.

References

1.
Söderberg
,
R.
,
Wärmefjord
,
K.
,
Lindkvist
,
L.
, and
Berlin
,
R.
,
2012
, “
The Influence of Spot Weld Position Variation on Geometrical Quality
,”
CIRP Ann.
,
61
(
1
), pp.
13
16
.
2.
Wang
,
B.
,
Lou
,
M.
,
Shen
,
Q.
,
Li
,
Y. B.
, and
Zhang
,
H.
,
2013
, “
Shunting Effect in Resistance Spot Welding Steels—Part 1: Experimental Study
,”
Weld. J.
,
92
(
6
), pp.
182s
189s
.
3.
Jafari Vardanjani
,
M.
,
Araee
,
A.
,
Senkara
,
J.
,
Jakubowski
,
J.
, and
Godek
,
J.
,
2016
, “
Metallurgical Effects of Shunting Current on Resistance Spot-Welded Joints of AA2219 Sheets
,”
J. Mater. Eng. Perform.
,
25
(
8
), pp.
3506
3517
.
4.
Jafari Vardanjani
,
M.
, and
Senkara
,
J.
,
2022
, “
Effect of Multi-pulsed Current Mechanism on Shunting Current in Resistance Spot Welding (RSW) of AA-2219 Sheets
,”
Exp. Technol.
,
46
(
4
), pp.
661
675
.
5.
Sawanishi
,
C.
,
Matsuda
,
H.
,
Okita
,
Y.
, and
Ikeda
,
R.
,
2023
, “
Development of Resistance Spot Welding Technology Applying Multi-stage Adaptive Control for Narrow Pitch Spot Welding of High Strength Steel Sheets
,”
Weld. Int.
,
37
(
9
), pp.
539
551
.
6.
Yu
,
J.
,
2018
, “
Adaptive Resistance Spot Welding Process That Reduces the Shunting Effect for Automotive High-Strength Steels
,”
Metals (Basel
),
8
(
10
), p.
775
.
7.
Li
,
Y. B.
,
Wang
,
B.
,
Shen
,
Q.
,
Lou
,
M.
, and
Zhang
,
H.
,
2013
, “
Shunting Effect in Resistance Spot Welding Steels—Part 2: Theoretical Analysis
,”
Weld. J.
,
92
(
8
), pp.
231s
238s
.
8.
Jafari Vardanjani
,
M.
,
Araee
,
A.
,
Senkara
,
J.
,
Jakubowski
,
J.
, and
Godek
,
J.
,
2016
, “
Theoretical Analysis of Shunting Effect in Resistance Spot Welding (RSW) of AA2219
,”
J. Chinese Inst. Eng.
,
39
(
8
), pp.
907
918
.
9.
Yu
,
J.
,
Faridh
,
M.
, and
Park
,
Y. W.
,
2018
, “
Adaptive Resistance Spot Welding Method That Reduces the Shunting Effect
,”
J. Manuf. Process.
,
35
, pp.
604
613
.
10.
Seyyedian Choobi
,
M.
,
Nielsen
,
C. V.
, and
Bay
,
N.
,
2015
, “
Finite Element and Experimental Study of Shunting in Resistance Spot Welding
,”
Proceedings of the 11th International Seminar Numerical Analysis of Weldability
,
Castle Seggau, Austria
,
Sept. 27
.
11.
Nielsen
,
C. V.
,
Zhang
,
W.
,
Perret
,
W.
,
Martins
,
P. A. F.
, and
Bay
,
N.
,
2014
, “
Three-Dimensional Simulations of Resistance Spot Welding
,”
Proc. Inst. Mech. Eng. Part D J. Autom. Eng.
,
229
(
7
), pp.
885
897
.
12.
Bi
,
J.
,
Song
,
J.
,
Wei
,
Q.
,
Zhang
,
Y.
,
Li
,
Y.
, and
Luo
,
Z.
,
2016
, “
Characteristics of Shunting in Resistance Spot Welding for Dissimilar Unequal-Thickness Aluminum Alloys Under Large Thickness Ratio
,”
Mater. Des.
,
101
, pp.
226
235
.
13.
Li
,
Y.
,
Bi
,
J.
,
Zhang
,
Y.
,
Luo
,
Z.
, and
Liu
,
W.
,
2017
, “
Shunting Characteristics in Triangular Arranged Resistance Spot Welding of Dissimilar Unequal-Thickness Aluminum Alloys
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5
), pp.
2447
2454
.
14.
Wang
,
J.
,
Wang
,
H. P.
,
Lu
,
F.
,
Carlson
,
B. E.
, and
Sigler
,
D. R.
,
2015
, “
Analysis of Al-Steel Resistance Spot Welding Process by Developing a Fully Coupled Multi-physics Simulation Model
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1061
1072
.
15.
Li
,
Y. B.
,
Lin
,
Z. Q.
,
Hu
,
S. J.
, and
Chen
,
G. L.
,
2007
, “
Numerical Analysis of Magnetic Fluid Dynamics Behaviors During Resistance Spot Welding
,”
J. Appl. Phys.
,
101
(
5
), p.
53506
.
16.
Gupta
,
O. P.
, and
De
,
A.
,
1998
, “
An Improved Numerical Modeling for Resistance Spot Welding Process and Its Experimental Verification
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
246
251
.
17.
Rogeon
,
P.
,
Carre
,
P.
,
Costa
,
J.
,
Sibilia
,
G.
, and
Saindrenan
,
G.
,
2008
, “
Characterization of Electrical Contact Conditions in Spot Welding Assemblies
,”
J. Mater. Process. Technol.
,
195
(
1
), pp.
117
124
.
18.
Rogeon
,
P.
,
Raoelison
,
R.
,
Carre
,
P.
, and
Dechalotte
,
F.
,
2008
, “
A Microscopic Approach to Determine Electrothermal Contact Conditions During Resistance Spot Welding Process
,”
ASME J. Heat Transfer
,
131
(
2
), p.
022101
.
19.
Brandt
,
R.
, and
Neuer
,
G.
,
2007
, “
Electrical Resistivity and Thermal Conductivity of Pure Aluminum and Aluminum Alloys Up To and Above the Melting Temperature
,”
Int. J. Thermophys.
,
28
(
5
), pp.
1429
1446
.
20.
Zhao
,
Y.
,
Zhang
,
Y.
,
Lai
,
X.
, and
Wang
,
P.-C.
,
2013
, “
Resistance Spot Welding of Ultra-Thin Automotive Steel
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021012
.
21.
Zhou
,
K.
,
Ren
,
B.
, and
Yu
,
W.
,
2023
, “
Optimized Designing of Generalized Electrodes for Aluminum/Steel Resistance Spot Welding Process Based on Numerical Calculation
,”
J. Manuf. Process.
,
99
, pp.
563
580
.
22.
Xu
,
S.
, and
Deng
,
X.
,
2004
, “
An Evaluation of Simplified Finite Element Models for Spot-Welded Joints
,”
Finite Elem. Anal. Des.
,
40
(
9
), pp.
1175
1194
.
23.
Yang
,
P.
,
Banerjee
,
S.
,
Kuang
,
W.
,
Ding
,
Y.
,
Ma
,
Q.
, and
Zhang
,
P.
,
2020
, “
Current Crowding and Spreading Resistance of Electrical Contacts With Irregular Contact Edges
,”
J. Phys. D. Appl. Phys.
,
53
(
48
), p.
485303
.
24.
Wang
,
S. C.
, and
Wei
,
P. S.
,
2000
, “
Modeling Dynamic Electrical Resistance During Resistance Spot Welding
,”
ASME J. Heat Transfer
,
123
(
3
), pp.
576
585
.
25.
Kimchi
,
M.
, and
Phillips
,
D. H.
,
2023
, “Introduction to Resistance Spot Welding,”
Resistance Spot Welding: Fundamentals and Applications for the Automotive Industry
,
M.
Kimchi
, and
D. H.
Phillips
, eds.,
Springer International Publishing
,
Cham
, pp.
1
2
.
26.
Banerjee
,
P.
,
Sarkar
,
R.
,
Pal
,
T. K.
, and
Shome
,
M.
,
2016
, “
Effect of Nugget Size and Notch Geometry on the High Cycle Fatigue Performance of Resistance Spot Welded DP590 Steel Sheets
,”
J. Mater. Process. Technol.
,
238
, pp.
226
243
.
27.
Jagadeesha
,
T.
,
2017
, “
Experimental Studies in Weld Nugget Strength of Resistance Spot-Welded 316L Austenitic Stainless Steel Sheet
,”
Int. J. Adv. Manuf. Technol.
,
93
(
1
), pp.
505
513
.
28.
Xing
,
B.
,
Xiao
,
Y.
, and
Qin
,
Q. H.
,
2018
, “
Characteristics of Shunting Effect in Resistance Spot Welding in Mild Steel Based on Electrode Displacement
,”
Measurement
,
115
, pp.
233
242
.
You do not currently have access to this content.