ABSTRACT

This study presents a comparison between computational simulations and experimental tests of fatigue crack growth (FCG) in austenitic stainless-steel Fe-25Ni-20Cr (Alloy 709) at 550°C, 600°C, and 700°C. FCG tests were conducted in compact, C(T), specimens at load ratios of R = 0.1, R = 0.5, and R = 0.7. Crack growth rates were measured using several monitoring techniques. In parallel with the experimental tests, a strip-yield model for creep-fatigue crack growth (SYM-CFCG) was employed to simulate crack growth under fatigue loading. The SYM-CFCG software predicts the development of plasticity-induced crack closure (PICC) near the tip of a growing crack. Computation of the PICC allows for predictions of crack growth rate at different R ratios. The evolution of crack-tip opening loads is presented for the entire crack growth history. Predictions of crack length evolution as a function of applied load cycles are compared with the experimental results. In addition, predictions of crack growth rates per cycle versus applied stress intensity factor range are also compared with the experimental measurements. In both cases, excellent agreements between experimental data and SYM-CFCG predictions are obtained. The crack growth data presented can represent a guiding criterion in establishing the fatigue service life of engineering components made of Alloy 709.

References

1.
C.
 
Li
and
M.
 
Yang
, “
The Challenge of Nuclear Reactor Structural Materials for Generation IV Nuclear Energy Systems
,” in
20th International Conference on Structural Mechanics in Reactor Technology
(
Raleigh, NC
:
International Association for Structural Mechanics in Reactor Technology
,
2009
),
2686
2693
.
2.
G.
 
Locatelli
,
M.
 
Mancini
, and
N.
 
Todeschini
, “
Generation IV Nuclear Reactors: Current Status and Future Prospects
,”
Energy Policy
61
(
2013
):
1503
1520
,
3.
F.
 
Delage
,
J.
 
Carmack
,
C. B.
 
Lee
,
T.
 
Mizuno
,
M.
 
Pelletier
, and
J.
 
Somers
, “
Status of Advanced Fuel Candidates for Sodium Fast Reactor within the Generation IV International Forum
,”
Journal of Nuclear Materials
441
, nos. 
1–3
(October
2013
):
515
519
,
4.
G.-H.
 
Koo
and
J.-H.
 
Lee
, “
High Temperature Structural Integrity Evaluation Method and Application Studies by ASME-NH for the Next Generation Reactor Design
,”
Journal of Mechanical Science and Technology
20
, no. 
12
(December
2006
):
2061
2078
,
5.
S. V.
 
Evropin
and
V. M.
 
Filatov
, “
Service-Life Analysis of Nuclear Reactor Elements under High-Frequency Random Loading
,”
Atomic Energy
113
, no. 
4
(February
2013
):
258
264
,
6.
G.
 
Flanagan
,
T.
 
Fanning
, and
T.
 
Sofu
, “
Sodium-Cooled Fast Reactor (SFR) Technology and Safety Overview
” (
paper presentation, Sodium-Cooled Fast Reactor Technology Seminar
,
Washington, DC
, February
18
,
2015
).
7.
Y.
 
Zhao
,
M. N.
 
Cinbiz
,
J.-S.
 
Park
,
J.
 
Almer
, and
D.
 
Kaoumi
, “
Tensile Behavior and Microstructural Evolution of a Fe-25Ni-20Cr Austenitic Stainless Steel (Alloy 709) from Room to Elevated Temperatures through In-Situ Synchrotron X-ray Diffraction Characterization and Transmission Electron Microscopy
,”
Journal of Nuclear Materials
540
(
2020
):
152367
,
8.
Z. Y.
 
Alsmadi
and
M. A.
 
Bourham
, “
Shielding and Corrosion Properties of the Alloy 709 as Canister Material for Spent Nuclear Fuel Dry Casks
,”
Defence Technology
21
(
2023
):
116
124
,
9.
Z. Y.
 
Alsmadi
and
K. L.
 
Murty
, “
Effect of Strain Range on High Temperature Creep-Fatigue Behaviour of Fe-25Ni-20Cr (wt.%) Austenitic Stainless Steel (Alloy 709)
,”
Materials at High Temperatures
38
, no. 
1
(
2021
):
47
60
,
10.
Z. Y.
 
Alsmadi
,
A.
 
Alomari
,
N.
 
Kumar
, and
K. L.
 
Murty
, “
Effect of Hold Time on High Temperature Creep-Fatigue Behavior of Fe–25Ni–20Cr (wt.%) Austenitic Stainless Steel (Alloy 709)
,”
Materials Science and Engineering: A
771
(
2020
):
138591
,
11.
T. D.
 
Porter
,
Z.
 
Wang
,
E. P.
 
Gilbert
,
M. J.
 
Kaufman
,
R. N.
 
Wright
, and
K. O.
 
Findley
, “
Microstructure Evolution of Alloy 709 During Static-Aging and Creep-Fatigue Testing
,”
Materials Science and Engineering: A
801
(
2021
):
140361
,
12.
Y.
 
Zhao
,
R.
 
Schoell
,
C.
 
Zheng
,
M. N.
 
Cinbiz
,
M.
 
Frost
,
K.
 
An
, and
D.
 
Kaoumi
, “
Creep Properties of Advanced Austenitic Steel 709 Determined through Short Experiments under In-Situ Neutron Diffraction Followed by TEM Characterization
,”
Materials Characterization
182
(
2021
):
111519
,
13.
A.
 
Lall
,
P.
 
Bowen
, and
A.
 
Rabiei
, “
A Study on the Creep Behavior of Alloy 709 Using In-Situ Scanning Electron Microscopy
,”
Materials Characterization
183
(
2022
):
111587
,
14.
N.
 
Shaber
,
R.
 
Stephens
,
J.
 
Ramirez
,
G. P.
 
Potirniche
,
M.
 
Taylor
,
I.
 
Charit
, and
H.
 
Pugesek
, “
Fatigue and Creep-Fatigue Crack Growth in Alloy 709 at Elevated Temperatures
,”
Materials at High Temperatures
36
, no. 
6
(
2019
):
562
574
,
15.
J.
 
Ramirez
,
G. P.
 
Potirniche
,
N.
 
Shaber
,
M.
 
Taylor
,
H.
 
Pugesek
,
R.
 
Stephens
, and
I.
 
Charit
, “
The Influence of Plasticity-Induced Crack Closure on Creep-Fatigue Crack Growth in Two Heat-Resistant Steels
,”
International Journal of Fatigue
125
(
2019
):
291
298
,
16.
J.
 
Ramirez
,
G. P.
 
Potirniche
,
H.
 
Pugesek
,
N.
 
Shaber
,
M.
 
Taylor
,
R. R.
 
Stephens
, and
I.
 
Charit
, “
Predicting Creep-Fatigue Crack Growth Rates in Alloy 709 Using Finite Element Simulations of Plasticity and Creep-Induced Crack Closure
,”
MATEC Web of Conferences
165
(
2018
):
13005
,
17.
A.
 
Lall
,
P.
 
Bowen
, and
A.
 
Rabiei
, “
Effect of Aging on Failure Mechanism of Alloy 709 at Various Temperatures
,”
Materials Characterization
171
(
2021
):
110750
,
18.
J.
 
Yan
,
S.
 
Yu
,
R.
 
Ding
,
H.
 
Li
,
A.
 
Rabiei
, and
P.
 
Bowen
, “
Dwell-Fatigue Crack Growth Behaviour of Alloy 709
,”
Acta Materialia
249
(
2023
):
118808
,
19.
S. E.
 
Ferreira
,
J. T. P.
 
de Castro
, and
M. A.
 
Meggiolaro
, “
Using the Strip-Yield Mechanics to Model Fatigue Crack Growth by Damage Accumulation ahead of the Crack Tip
,”
International Journal of Fatigue
103
(
2017
):
557
575
,
20.
C.
 
Cauthen
,
S. R.
 
Daniewicz
, and
N.
 
Shamsaei
, “
Modeling Fatigue Crack Growth Behavior in Rolled AZ31 Magnesium Alloy Using CTOD Based Strip Yield Modeling
,”
International Journal of Fatigue
96
(
2017
):
196
207
,
21.
S. E.
 
Ferreira
,
J. T. P.
 
de Castro
, and
M. A.
 
Meggiolaro
, “
Fatigue Crack Growth Predictions Based on Damage Accumulation ahead of the Crack Tip Calculated by Strip-Yield Procedures
,”
International Journal of Fatigue
115
(
2018
):
89
106
,
22.
R. W.
 
Fullera
,
J.
 
Simsiriwong
, and
N.
 
Shamsaei
, “
Crack Growth Prediction for Irradiated Stainless Steels under the Combined Fatigue-Creep Loading
,”
Theoretical and Applied Fracture Mechanics
109
(
2020
):
10275
,
23.
G. P.
 
Potirniche
, “
A Closure Model for Predicting Crack Growth under Creep-Fatigue Loading
,”
International Journal of Fatigue
125
(
2019
):
58
71
,
24.
B. J.
 
Andrews
and
G. P.
 
Potirniche
, “
Constitutive Creep–Fatigue Crack Growth Methodology in Two Steels Using a Strip Yield Model
,”
Engineering Fracture Mechanics
140
(
2015
):
72
91
,
25.
G. P.
 
Potirniche
, “
A Numerical Strip-Yield Model for the Creep Crack Incubation in Steels
,”
Journal of ASTM International
9
, no. 
3
(March
2012
):
1
13
,
26.
J. C.
 
Newman
and
R.
 
Sullivan
, “
Strip-Yield Modeling of Load-Time-Temperature Effects on Crack Growth in Engine Materials
,” in
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 10B: Structures and Dynamics
(
New York
:
American Society of Mechanical Engineers
,
2020
),
V10BT27A004
, https://doi.org/10.1115/GT2020-14211
27.
Standard Test Method for Fatigue Crack Growth Testing
, ASTM E647-13 (
West Conshohocken, PA
:
ASTM International
, approved November
15
,
2013
), https://doi.org/10.1520/E0647-23B
28.
W.
 
Elber
, “
The Significance of Fatigue Crack Closure
,” in
Damage Tolerance in Aircraft Structures
, ed.
M. S.
 
Rosenfeld
(
West Conshohocken, PA
:
ASTM International
,
1971
),
230
242
, https://doi.org/10.1520/STP26680S
You do not currently have access to this content.