The phenomenon of cleavage fracture initiation in rock salt undergoing concurrent creep was studied experimentally using the Brazilian indirect tension test technique. The tensile creep and cleavage fracture behaviors were characterized for rock salt from the Waste Isolation Pilot Plant (WIPP) site. The Brazilian test consists of a compressive line load applied diametrically on a disk specimen to produce a region of tensile stress in the center of the disk. The damage processes were documented using video photography. The experimental results were analyzed in terms of a wing-crack fracture model and an independently developed, coupled time-dependent, mechanism-based constitutive model whose parameters were obtained from triaxial compression creep tests. Analytical results indicate that coupling between creep and cleavage fracture in WIPP salt results in a fracture behavior that exhibits time-dependent characteristics and obeys a failure criterion involving a combination of stress difference and tensile stress. Implications of creep-induced cleavage fracture to the integrity of WIPP structures are discussed.

1.
Ashby
M. F.
,
1983
, “
Mechanisms of Deformation and Fracture
,”
Advances in Applied Mechanics
, Vol.
23
, pp.
117
177
.
2.
Ashby
M. F.
, and
Hallam
S. D.
,
1986
, “
The Failure of Brittle Solids Containing Small Cracks Under Compressive Stress States
,”
Acta Metallurgica
, Vol.
34
, pp.
497
510
.
3.
Chan
K. S.
,
Bodner
S. R.
,
Fossum
A. F.
, and
Munson
D. E.
,
1992
, “
A Constitutive Model for Inelastic Flow and Damage Evolution in Solids Under Triaxial Compression
,”
Mechanics of Materials
, Vol.
14
, pp.
1
14
.
4.
Chan
K. S.
,
Brodsky
N. S.
,
Fossum
A. F.
,
Bodner
S. R.
, and
Munson
D. E.
,
1994
, “
Damage-Induced Nonassociated Inelastic Flow in Rock Salt
,”
International Journal of Plasticits
, Vol.
10
, No.
6
, pp.
623
642
.
5.
Chan, K. S., DeVries, K. L., Bodner, S. R., Fossum, A. F., and Munson, D. E., 1995, “A Damage Mechanics Approach to Life Prediction for a Salt Structure,” Computational Mechanics ’95, S. N. Atluri, G. Yagawa, and T. A. Cruse, eds., Springer-Verlag, Berlin, Vol. 1, pp. 1140–1145.
6.
Chan
K. S.
,
Munson
D. E.
,
Bodner
S. R.
, and
Fossum
A. F.
,
1996
, “
Cleavage and Creep Fracture of Rock Salt
,”
Acta Materialic
, Vol.
44
, pp.
3553
3565
.
7.
Chan
K. S.
,
Bodner
S. R. M.
,
Fossum
A. F.
, and
Munson
D. E.
,
1997
a, “
A Damage Mechanics Treatment of Creep Failure in Rock Salt
,”
International Journal of Damage Mechanics
, Vol.
6
, pp.
121
152
.
8.
Chan, K. S., Munson, D. E., Fossum, A. F., and Bodner, S. R., 1997b, “A Constitutive Model for Representing Coupled Creep, Fracture, and Healing in Rock Salt,” Proceedings of the Fourth Conference on the Mechanical Behavior of Salt, E´cole Polytechnique de Montre´al, University of Montre´al, June 17–18, 1996, Karl Distributors, Rockport, MA, pp. 221–234.(in press).
9.
Costin, L. S., and Wawersik, W. R., 1980, Creep Healing of Fracture in Rock Salt, SAND-80–0392. Sandia National Laboratories, Albuquerque, NM.
10.
Fossum, A. F., Callahan, G. D., Van Sambeek, L. L., and Senseny, P., 1988, “How Should One-Dimensional Laboratory Equations Be Cast Into Three-Dimensional Form?” Key Questions in Rock Mechanics, Proceedings of the 29th Symposium on Rock Mechanics, Minneapolis, MN, June 13–15. 1988, P. A. Cundall, R. L. Sterling, and A. M. Starfield, eds., A. A. Balkema, Brookfield, VT, pp. 35–41.
11.
Fossum, A. F., Brodsky, N. S., Chan, K. S., and Munson, D. E., 1993, “Experimental Evaluation of a Constitutive Model For Inelastic Flow and Damage Evolution in Solids Subjected to Triaxial Compression,” presented at the 34th U.S. Rock Mechanics Symposium, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 30, pp. 1341–1344.
12.
Frocht, M. M., 1948, Photoelasticity, Vol. II, Wiley, New York, pp. 121–129.
13.
Gandhi
C.
, and
Ashby
M. F.
,
1979
, “
Fracture-Mechanism Maps for Materials which Cleave: F.C.C., B.C.C., and H.C.P. Metals and Ceramics
,”
Acta Metallurgica
, Vol.
27
, pp.
1565
1602
.
14.
Griffith
A. A.
,
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Philosophical Transactions, Royal Society of London
, Vol.
221A
, pp.
163
197
.
15.
Horii
H.
, and
Nemat-Nasser
S.
,
1985
, “
Compression-Induced Microcrack Growth in Brittle Solids: Axial Splitting and Shear Failure
,”
Journal of Geophysical Research
, Vol.
90
, pp.
3105
3125
.
16.
Hunsche, U. E., 1993, “Failure Behaviour of Rock Salt Around Underground Cavities,” Proceedings of the 7th Symposium on Salt, Vol. I, Elsevier Science Pub., New York, pp. 59–65.
17.
Kachanov
L. M.
,
1958
, “
On Creep Rupture Time
,”
Otdelenie Tekhnicheskikh Nauk
, Izvestiya Akademii Nauk SSSR, Vol.
8
, pp.
26
31
.(in Russian).
18.
Leckie
F. A.
, and
Hayhurst
D.
,
1977
, “
Constitutive Equations for Creep Rupture
,”
Acta Metallurgica
, Vol.
25
, No.
9
, pp.
1059
1070
.
19.
Munson, D. E., 1979, Preliminary Deformation-Mechanism Map for Salt (with Application to WIPP), SAND79–0076, Sandia National Laboratories, Albuquerque, NM.
20.
Munson, D. E., and Dawson, P. R., 1984, “Salt Constitutive Modeling using Mechanism Maps,” Proceedings of the First Conference on the Mechanical Behavior of Salt, Karl Distributors, Rockport, MA, pp. 717–737.
21.
Nemat-Nasser
S.
, and
Horii
H.
,
1982
, “
Compression-Induced Nonplanar Crack Extension with Application to Splitting, Exfoliation, and Rockburst
,”
Journal of Geophysical Research
, Vol.
87
, pp.
6805
6821
.
22.
Shaw
M. C.
,
Braiden
P. M.
, and
DeSalvo
G. J.
,
1975
, “
The Disk Test for Brittle Materials
,”
ASME Journal of Engineering for Industry
, Vol.
97
, No.
1
, pp.
77
87
.
23.
Tada, H., Paris, P., and Irwin, G., 1973, “The Stress Analysis of Cracks Handbook,” Del Research, Hellertown, PA.
This content is only available via PDF.
You do not currently have access to this content.