The forces during wire and tube drawing can be reduced by ultrasonically oscillating dies. It is a major problem of conventional wire and tube drawing to introduce high forces into the forming area. Compared to conventional wire and tube drawing, the forming process limits can be extended by superimposing ultrasonic waves due to decreasing drawing forces. Different techniques can be used to excite the die. One possibility is the variation of the vibration mode. In tube and wire drawing, the dies are usually excited longitudinally. If the vibration direction is parallel to the drawing direction, the main influence will be on the friction between workpiece and die. The Institute for Metal Forming Technology of the University of Stuttgart, Germany started a project to investigate the effect of ultrasonic waves on the tribology and on the formability of the workpiece. The objective of this investigation is to separate the ultrasonic effect on the surface from the volume effects. This paper shows that the reduction of the sliding friction between a longitudinal oscillating die and the workpiece can be explained by the so-called Sliding Friction Vector Effect (SFVE). A statistical evaluation of roughness-measurements makes it possible to show the effect of the ultrasonic vibration on the friction and gives an insight into the operation of the SFVE. The results are compared with wire and tube drawing experiments of copper and Ti-alloys. New tube- and wire-drawing experiments with longitudinally vibrating dies support the theoretical approach. The surface quality of the manufactured workpieces can be improved and the productivity increased.

1.
Sansome
,
D. H.
,
1973
, “
Recent developments in oscillatory metalworking
,”
Engineering
, Apr., pp.
243
247
.
2.
Jones, J. B., 1967, “Ultrasonic metal deformation processing,” CIRP International Conference on Manufactoring Technology, pp. 983–1006.
3.
Garskii, F. K., and Efromov, V. I., 1953, “Effect of ultrasound on the decomposition of solid solutions,” Izv. Akad. Nauk, Beloroussk SSR, No. 3.
4.
Blaha
,
F.
, and
Langenecker
,
B.
,
1955
, “
Dehnung von Zink-Einkristallen unter Ultraschalleinwirkung
,”
Naturwissenschaften
,
42
, p.
556
556
.
1.
Maropis
,
N.
,
1991
, “
Ultrasonic energy applied to metal drawing—Part I
,”
Wire Industry
,
58
, No.
689
, pp.
251
253
,
2.
Part II. ,
58
, No.
690
, pp.
327
333
,
3.
Part III. ,
58
, No.
691
, pp.
371
373
1.
Lehfeldt, E., 1968, “Beeinflussung metallischer Reibungsvorga¨nge durch Schall im 20 kHz-Bereich,” Diss. RWTH Aachen.
2.
Adachi
,
K.
,
1996
, “
The micro-mechanism of friction drive with ultrasonic wave
,”
Wear
,
194
, pp.
137
142
.
3.
Liu
,
Y.
, et al.
,
1992
, “
Ultraschallwellen reduzieren Reibkraft beim Gleiten
,”
Tribologie und Schmierungstechnik
,
39
,
No. 4
No. 4
.
4.
Liu
,
Y.
, et al.
,
1990
, “
Reibkraftverringerung gleitender fester Ko¨rper durch Ultraschallwellen
,”
Tribologie und Schmierungstechnik
,
37
,
No. 5
No. 5
.
5.
Schey, J. A., 1983, “Tribology in Metalworking,” American Society for Metals, pp. 93–94, pp. 375–376.
6.
Mo¨llers
,
J.
, and
Fischer
,
F.
,
1975
, “
U¨ber den Einfluß von Ultraschall auf die Reibung beim Tiefziehen
,”
Ba¨nder Bleche Rohre
,
11
, pp.
457
460
.
7.
Siegert, K., et al., 1996, “Flexible micro metal forming with ultrasonically oscillating dies,” Production Engineering III/2, pp. 25–28.
8.
Bo¨hm, E., 1962, “Neue Versuche an Kadmium-Einkristallen,” Dissertation, Universita¨t Wien.
9.
Izumi, O., Oyama, K., and Suzuki, Y., “Effects of superimposed ultrasonic vibration on compressive deformations of metals,” The Research Institute of Iron, Steel and other Metals, Tohoku, University Sendai, Japan.
10.
Sansome, D. H., 1989, “Engineering developments in ultrasonic tube-drawing-equipment,” ITA Conference Tube 89, Singapore, Oct.
11.
Siegert
,
K.
, and
Mo¨ck
,
A.
,
1996
, “
Wire drawing with ultrasonically oscillating dies
,”
J. Mater. Process. Technol.
,
60
, pp.
657
660
.
12.
Moeck, A., 1999, “Beitrag zur Wirkung des Ultraschalls auf das Umformen am Beispiel des Draht und Rohrziehens mit in Eigenfrequenz schwingender Matrize,” Dissertation, Universita¨t Stuttgart, in print.
13.
Lucas, M., 1989, “Schwingungsanalyse bei Ultraschall-frequenzen,” 12th Biennial Conf. On Mech. Vibr. Noise, DE184, Sept., pp. 235–240.
14.
Lucas
,
M.
,
1996
, “
Vibration sensitivity in the design of ultrasonic forming dies
,”
Ultrasonics
,
34
, pp.
35
41
.
15.
Siebel
,
E.
,
1947
, “
Der derzeitige Stand der Erkenntnisse u¨ber die mechanischen Vorga¨nge beim Drahtziehen
,”
Stahl und Eisen
,
66/67
, 11/12, pp.
171
180
.
16.
Malek, R., 1997, “Beitrag zum Rohrziehen mit ultraschallerregtem Dorn,” Dissertation, Universita¨t Stuttgart, Beitra¨ge zur Umformtechnick, 15, DGM Informationsgesellschaft Verlag.
17.
Malek, R., 1995, “Rohrziehen mit ultraschallerregtem Dorn,” Neuere Entwicklungen in der Massivumformung, K. Siegert, ed., pp. 457–475.
18.
Winsper
,
C. E.
,
Dawson
,
G. R.
, and
Sansome
,
D. H.
,
1970
, “
An introduction to the mechanics of oscillatory metalworking
,”
Metals and Materials
, Apr., pp.
158
162
.
19.
Siegert
,
K.
, and
Ulmer
,
J.
,
1998
, “
Reduction in sliding friction through ultrasonic waves
,”
Production Engineering
,
5
, No.
1
, pp.
25
28
.
20.
SFB 543, Teilprojekt A2, Forschungsbericht 1. Fo¨rderperiode, Universita¨t Stuttgart, 2000.
21.
Siegert, K., et al., 1999, “Development of a portable sensor for the three-dimensional measurement of sheet and tool surfaces,” SAE Technical paper Series 1999-01-0684, International Congress, Michigan, Mar. 1–4.
You do not currently have access to this content.