Dislocation densities, arrangements and long range internal stresses in cold rolled polycrystalline Cu, Ni, and Al, as well as in cold torsioned Fe, were determined by X-ray diffraction profile analysis using synchrotron radiation. At different deformation degrees, scanning measurements across single grains with a focal spot of less than 50 μm were carried out, in order to inform on the features of the deformation induced substructure. At small deformations including stage III, the dislocation densities and internal stresses are uniform within single grains while at higher deformations in stages IV and V, the dislocation densities and long range internal stresses exhibit opposite fluctuations. In stage IV these fluctuations correspond to the formation of polarized tilt walls (PTW’s) from polarized dipole walls (PDW’s). In contrast to the PDW’s, the PTW’s cause a much higher misorientation in between adjacent lattice areas. This transformation, which is the main element of the progressing fragmentation process during large strain deformation, occurs in all metals studied regardless of dislocation mobility and/or lattice type. Approaching higher strains in stage V, however, these parameters gain some importance especially when the deformation occurs in an iterative way. If the mobility is high, marked static recovery takes place between the single deformation passes, which results in decreases of both dislocation density and local internal stress, and no formation of PTW’s is observed.

1.
Mughrabi
,
H.
,
1983
, “
Dislocation wall and cell structures and long range internal stresses in deformed metal crystals
,”
Acta Metall.
31
, pp.
1367
1379
.
2.
Gil Sevillano
,
J.
,
Van Houtte
,
P.
, and
Aernoudt
,
E.
,
1980
, “
Large strain work hardening and textures
,”
Prog. Mater. Sci.
25
, pp.
69
412
.
3.
Hansen
,
N.
,
1990
, “
Cold deformation microstructures
,”
Mater. Sci. Technol.
6
,
1039
1047
.
4.
Unga´r
,
T.
,
Mughrabi
,
H.
, and
Wilkens
,
M.
,
1982
, “
An X-ray line-broadening study of dislocations near the surface and in the bulk of deformed copper single crystals
,”
Acta Metall.
30
, pp.
1861
1867
.
5.
Unga´r
,
T.
,
Mughrabi
,
H.
,
Ro¨nnpagel
,
D.
, and
Wilkens
,
M.
,
1984
, “
X-ray line broadening study of the dislocation cell structure in deformed [001]-orientated copper single crystals
,”
Acta Metall.
32
, pp.
333
342
.
6.
Unga´r
,
T.
, and
Zehetbauer
,
M.
,
1996
, “
Stage IV work hardening in cell forming materials, pt. II: A new mechanism
,”
Scr. Mater.
35
, pp.
1467
1473
.
7.
Schafler
,
E.
,
Zehetbauer
,
M.
,
Borbely
,
A.
, and
Unga´r
,
T.
,
1997
Dislocation densities and internal stresses in large strain cold worked pure iron
,”
Mater. Sci. Eng., A
234–236
,
445
448
.
8.
Kuhlmann-Wilsdorf
,
D.
, and
Hansen
,
N.
,
1991
, “
Geometrically necessary, incidental and subgrain boundaries
,”
Scr. Metall. Mater.
25
, pp.
1557
1562
.
9.
Hughes D. A., 1995, “The evolution of deformation microstructures and local orientations,” Proc. 19th Int. Symp. Mater. Sci., Hansen, N. et al., eds., Riso National Laboratory, Roskilde, Denmark, pp. 63–85.
10.
Zehetbauer
,
M.
, and
Seumer
,
V.
,
1993
, “
Cold work hardening in stages IV and V of f.c.c. metals –I. Experiments and interpretation
,”
Acta Metall. Mater.
41
, pp.
577
588
.
11.
Les
,
H. P.
,
Stu¨we
,
H. P.
, and
Zehetbauer
,
M.
,
1997
, “
Hardening and strain rate sensitivity in stage IV of deformation in f.c.c. and b.c.c. metals
,”
Mater. Sci. Eng., A
234–236
, pp.
453
455
.
12.
Rollett, A. D., Kocks, U. F., Embury, J. D., Stout, M. G., and Doherty, R. D., 1987, “Strain hardening at large strains,” Proc. 8th Int.Conf.Strength Met. & Alloys (ICSMA 8), Tampere, Finland, Kettunen, P.O. et al., eds., Pergamon, Oxford, p. 433–438.
13.
Argon
,
A. S.
, and
Haasen
,
P.
,
1993
, “
A new mechanism of work hardening in the late stages of large strain plastic flow in fcc and diamond cubic crystals
,”
Acta Metall. Mater.
41
, pp.
3289
3306
.
14.
Zehetbauer
,
M.
,
1993
, “
Cold work hardening in stages IV and V of fcc metals-II. model fits and physical results
,”
Acta Metall. Mater.
41
, pp.
589
599
.
15.
Marthinsen
,
K.
, and
Nes
,
E.
,
1997
, “
A general model for metal plasticity
,”
Mater. Sci. Eng., A
234–236
, pp.
1095
1098
.
16.
Estrin
,
Y.
,
Toth
,
L. S.
,
Molinari
,
A.
, and
Brechet
,
Y.
,
1998
, “
A dislocation-based model for all hardening stages in large strain deformation
,”
Acta Mater.
46
, pp.
5509
5522
.
17.
Valiev
,
R. Z.
,
Islamgaliev
,
R. K.
, and
Alexandrov
,
I. V.
,
2000
, “
Bulk Nanostructured Materials from Severe Plastic Deformationation
,”
Prog. Mater. Sci.
45
, pp.
103
189
.
18.
Wilkens
,
M.
, and
Bargouth
,
M. O.
,
1968
, “
Die Bestimmung der Versetzungsdichte verformter Kupfer-Einkristalle aus verbreiterten Ro¨ntgenbeugungsprofilen,”
Acta Metall.
16
, pp.
465
468
.
19.
Oettel
,
H.
,
1971
, “
X-ray analysis of dislocation densities and resistivity changes of plastically deformed fcc Ni-Co alloys
,”
Phys. Status Solidi A
6
,
265
272
.
20.
Groma
,
I.
,
Unga´r
,
T.
, and
Wilkens
,
M.
,
1988
, “
Asymmetric X-ray line broadening of plastically deformed crystals. Theory
,”
J. Appl. Cryst
21
, pp.
47
53
.
21.
Unga´r
,
T.
,
Groma
,
I.
, and
Wilkens
,
M.
,
1989
, “
Asymmetric X- ray line broadening of plastically deformed crystals. II. Evaluation procedure and application to [001]-Cu Crystals
,”
J. Appl. Crystallogr.
22
, pp.
226
34
.
22.
Mu¨ller
,
M.
,
Zehetbauer
,
M.
,
Borbe´ly
,
A.
, and
Unga´r
,
T.
,
1996
, “
Stage IV work hardening in cell forming materials, Part I: Features of the dislocation structure determined by X-ray line broadening
,”
Scr. Metall. Mater.
35
, pp.
1461
1466
.
23.
Zehetbauer
,
M.
,
Unga´r
,
T.
,
Kral
,
R.
,
Borbely
,
A.
,
Schafler
,
E.
,
Ortner
,
B.
,
Amenitsch
,
H.
, and
Bernstorff
,
S.
,
1999
, “
Scanning X-ray diffraction peak profile analysis in deformed Cu-polycrystals by synchrotron radiation
,”
Acta Mater.
47
, pp.
1053
1061
.
24.
Schafler
,
E.
,
Zehetbauer
,
M.
,
Kopacz
,
I.
,
Unga´r
,
T.
,
Hanak
,
P.
,
Amenitsch
,
H.
, and
Bernstorff
,
S.
,
1999
, “
Microstructural parameters in large strain deformed Ni polycrystals as investigated by synchrotron radiation
,”
Phys. Status Solidi A
175
, pp.
501
511
.
25.
Schafler, E., Zehetbauer, M., Hanak, P., Unga´r, T., Hebesberger, T., Pippan, R., Mingler, B., Karnthaler, H.P., Amenitsch, H., and Bernstorff, S., 2000, “Fragmentation in large strain cold rolled Aluminum as observed by synchrotron X-ray Bragg Peak Profile Analysis (SXPA), Electron Back Scatter Patterning (EBSP) and Transmission Electron Microscopy (TEM),” Proc. NATO Advanced Research Workshop “Investigations and Applications of Severe Plastic Deformation”, Moscow, 1999, Russia, T. C. Lowe and R. Z. Valiev, eds., Kluwer Acad. Publ., pp. 163–171.
26.
Schafler
,
E.
,
Zehetbauer
,
M.
,
Unga´r
,
T.
,
Bernstorff
,
S.
, and
Amenitsch
,
H.
,
2000
, “
Microscale Spatial Distribution of Dislocations and Long Range Internal Stresses in Cold Worked bcc Fe,” Proc. 5th Asia Pacific Symposium on Advances in Engineering Plasticity & Applications (AEPA 2000), Hong-Kong
,
Key Eng. Mater.
177–180
, pp.
159
164
.
27.
Hebesberger
,
T.
,
Schafler
,
E.
,
Zehetbauer
,
M.
,
Pippan
,
R.
,
Unga´r
,
T.
, and
Bernstorff
,
S.
,
2001
, “
Electron Back Scatter Diffraction (EBSD) and Synchrotron X-Ray Profile Analysis (SXPA) as Tools for Microstructural Characterization of Large Strain Work Hardened Metals
,”
Z. Metallkd.
92
, pp.
410
416
.
28.
Amenitsch
,
H.
,
Bernstorff
,
S.
and
Laggner
,
P.
,
1995
, “
High Flux Beamline for Small Angle X-ray Scattering at ELETTRA
,”
Rev. Sci. Instrum.
66
, pp.
1624
1626
.
29.
Wilkens
,
M.
,
1970
, “
The determination of density and distribution of dislocations in deformed single crystals form broadened X-ray diffraction profiles
,”
Phys. Status Solidi A
2
, pp.
359
370
.
30.
Kocks
,
U. F.
, and
Scattergood
,
R. O.
,
1969
, “
Elastic interactions between dislocations in a finite Body
,”
Acta Metall.
17
, pp.
1161
1168
.
31.
Wilkens
,
M.
,
Herz
,
K.
, and
Mughrabi
,
H.
,
1980
, “
An X-ray diffraction study of cyclically and of unidirectionally deformed copper single crystals
,”
Z. Metallkd.
71
, pp.
376
384
.
32.
Zehetbauer
,
M.
, and
Trattner
,
D.
,
1987
, “
Effects of stress-aided static recovery in iteratively cold-worked aluminum and copper
,”
Mater. Sci. Eng.
89
, pp.
93
101
.
You do not currently have access to this content.