Owing to their superior mechanical and physical properties, carbon nanotubes seem to hold a great promise as an ideal reinforcing material for composites of high-strength and low-density. In most of the experimental results up to date, however, only modest improvements in the strength and stiffness have been achieved by incorporating carbon nanotubes in polymers. In the present paper, the stiffening effect of carbon nanotubes is quantitatively investigated by micromechanics methods. Especially, the effects of the extensively observed waviness and agglomeration of carbon nanotubes are examined theoretically. The Mori-Tanaka effective-field method is first employed to calculate the effective elastic moduli of composites with aligned or randomly oriented straight nanotubes. Then, a novel micromechanics model is developed to consider the waviness or curviness effect of nanotubes, which are assumed to have a helical shape. Finally, the influence of nanotube agglomeration on the effective stiffness is analyzed. Analytical expressions are derived for the effective elastic stiffness of carbon nanotube-reinforced composites with the effects of waviness and agglomeration. It is found that these two mechanisms may reduce the stiffening effect of nanotubes significantly. The present study not only provides the relationship between the effective properties and the morphology of carbon nanotube-reinforced composites, but also may be useful for improving and tailoring the mechanical properties of nanotube composites.

1.
Iijima
,
S.
,
1991
, β€œ
Helical Microtubles of Graphitic Carbon
,”
Nature (London)
,
354
, pp.
56
–
58
.
2.
Qian
,
D.
,
Wagner
,
G. J.
,
Liu
,
W. K.
,
Yu
,
M. F.
, and
Ruoff
,
R. S.
,
2002
, β€œ
Mechanics of Carbon Nanotubes
,”
Appl. Mech. Rev.
,
55
(
6
), pp.
495
–
533
.
3.
Saito, R., Dresselhaus, G., and Dresselhaus, M. S., 1998, Physical Properties of Carbon Nanotubes, Imperial College Press, London.
4.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
,
1996
, β€œ
Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes
,”
Nature (London)
,
381
, pp.
678
–
680
.
5.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1996
, β€œ
Nanomechanics of Carbon Tubes: Instability Beyond Linear Response
,”
Phys. Rev. Lett.
,
76
(
14
), pp.
2511
–
2514
.
6.
Yu
,
M. F.
,
Files
,
B. S.
,
Arepalli
,
S.
, and
Ruoff
,
R. S.
,
2000
, β€œ
Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties
,”
Phys. Rev. Lett.
,
84
, pp.
5552
–
5555
.
7.
Yu
,
M. F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
, and
Ruoff
,
R. S.
,
2000
, β€œ
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
,
287
, pp.
637
–
640
.
8.
Zhang
,
P.
,
Huang
,
Y.
,
Gao
,
H.
, and
Hwang
,
K. C.
,
2002
, β€œ
Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials
,”
ASME J. Appl. Mech.
,
69
(
3
), pp.
454
–
458
.
9.
Zhang
,
P.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Klein
,
P. A.
, and
Hwang
,
K. C.
,
2002
, β€œ
The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials
,”
Int. J. Solids Struct.
,
39
, pp.
3893
–
3906
.
10.
Cornwell
,
C. F.
, and
Wille
,
L. T.
,
1997
, β€œ
Elastic Properties of Single-Walled Carbon Nanotubes in Compression
,”
Solid State Commun.
,
101
(
8
), pp.
555
–
558
.
11.
Yao
,
Z. H.
,
Zhu
,
C. C.
,
Cheng
,
M.
, and
Liu
,
J.
,
2001
, β€œ
Mechanical Properties of Carbon Nanotube by Molecular Dynamics Simulation
,”
Comput. Mater. Sci.
,
22
, pp.
180
–
184
.
12.
Ebbesen
,
T. W.
,
Lezec
,
H. J.
, and
Hiura
,
H.
,
1996
, β€œ
Electrical Conductivity of Individual Carbon Nanotubes
,”
Nature (London)
,
382
, pp.
54
–
56
.
13.
Wei
,
J. H.
,
Xie
,
S. J.
,
Wang
,
S. G.
, and
Mei
,
M. L.
,
2001
, β€œ
Dimensional Model of Carbon Nanotubes
,”
Phys. Lett. A
,
292
, pp.
207
–
211
.
14.
Calvert
,
P.
,
1999
, β€œ
Nanotube Composites: A Recipe for Strength
,”
Nature (London)
,
399
, pp.
210
–
211
.
15.
Thostenson
,
E. T.
,
Ren
,
Z.
, and
Chou
,
T. W.
,
2001
, β€œ
Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
,
61
, pp.
1899
–
1912
.
16.
Haggenmueller
,
R.
,
Gommans
,
H. H.
,
Rinzler
,
A. G.
,
Fischer
,
J. E.
, and
Winey
,
K. I.
,
2000
, β€œ
Aligned Single-Wall Carbon Nanotubes in Composites by Melt Processing Methods
,”
Chem. Phys. Lett.
,
330
, pp.
219
–
225
.
17.
Bower
,
C.
,
Rosen
,
R.
,
Jin
,
L.
,
Han
,
J.
, and
Zhou
,
O.
,
1999
, β€œ
Deformation of Carbon Nanotubes in Nanotube-Polymer Composites
,”
Appl. Phys. Lett.
,
74
(
22
), pp.
3317
–
3319
.
18.
Lourie
,
O.
,
Cox
,
D. M.
, and
Wagner
,
H. D.
,
1998
, β€œ
Buckling and Collapse of Embedded Carbon Nanotubes
,”
Phys. Rev. Lett.
,
81
(
8
), pp.
1638
–
1641
.
19.
Wagner
,
H. D.
,
Lourie
,
O.
,
Feldman
,
Y.
, and
Tenne
,
R.
,
1998
, β€œ
Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix
,”
Appl. Phys. Lett.
,
72
(
2
), pp.
188
–
190
.
20.
Lourie
,
O.
, and
Wagner
,
H. D.
,
1998
, β€œ
Transmission Electron Microscopy Observations of Single-Wall Carbon Nanotubes Under Axial Tension
,”
Appl. Phys. Lett.
,
73
(
24
), pp.
3527
–
3529
.
21.
Jia
,
Z. J.
,
Wang
,
Z.
,
Xu
,
C.
,
Liang
,
J.
,
Wei
,
B.
,
Wu
,
D.
, and
Zhu
,
S.
,
1999
, β€œ
Study on Poly(methyl methacrylate)/Carbon Nanotube Composites
,”
Mater. Sci. Eng., A
,
271
, pp.
395
–
400
.
22.
Qian
,
D.
,
Dickey
,
E. C.
,
Andrews
,
R.
, and
Rantell
,
T.
,
2000
, β€œ
Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites
,”
Appl. Phys. Lett.
,
76
, pp.
2868
–
2870
.
23.
Po¨tschke
,
P.
,
Fornes
,
T. D.
, and
Paul
,
D. R.
,
2002
, β€œ
Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites
,”
Polymer
,
43
(
11
), pp.
3247
–
3255
.
24.
Andrews
,
R.
,
Jacques
,
D.
,
Rao
,
A. M.
,
Rantell
,
T.
,
Derbyshire
,
F.
,
Chen
,
Y.
,
Chen
,
J.
, and
Haddon
,
R. C.
,
1999
, β€œ
Nanotube Composite Carbon Fibers
,”
Appl. Phys. Lett.
,
75
(
9
), pp.
1329
–
1331
.
25.
Odegard
,
G. M.
,
Gates
,
T. S.
,
Wise
,
K. E.
,
Park
,
C.
, and
Siochi
,
E. J.
,
2002
, β€œ
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
,”
Compos. Sci. Technol.
,
63
(
11
), pp.
1671
–
1687
.
26.
Ajayan
,
P. M.
,
Schadler
,
L. S.
,
Giannaris
,
C.
, and
Rubio
,
A.
,
2000
, β€œ
Single-Walled Nanotube-Polymer Composites: Strength and Weaknesses
,”
Adv. Mater. (Weinheim, Ger.)
,
12
(
10
), pp.
750
–
753
.
27.
Nardelli
,
M. B.
,
Fattebert
,
J. L.
,
Orlikowski
,
D.
,
Roland
,
C.
,
Zhao
,
Q.
, and
Bernholc
,
J.
,
2000
, β€œ
Mechanical Properties, Defects and Electronic Behavior of Carbon Nanotubes
,”
Carbon
,
38
, pp.
1703
–
1711
.
28.
Nemat-Nasser, S., and Hori, M., 1993, Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland, New York.
29.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, β€œ
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
, pp.
571
–
574
.
30.
Hill
,
R.
,
1965
, β€œ
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
, pp.
213
–
222
.
31.
Mura, T., 1987, Micromechanics of Defects in Solids, Martinus Nijhoff Publishers, Dordrecht.
32.
Popov
,
V. N.
,
Doren
,
V. E.
, and
Balkanski
,
M.
,
2000
, β€œ
Elastic Properties of Crystals of Single-Walled Carbon Nanotubes
,”
Solid State Commun.
,
114
, pp.
395
–
399
.
33.
Andrews
,
R.
,
Jacques
,
D.
,
Minot
,
M.
, and
Rantell
,
T.
,
2002
, β€œ
Fabrication of Carbon Multiwall Nanotube/Polymer Composites by Shear Mixing
,”
Macromolecular Materials and Engineering
,
287
, pp.
395
–
403
.
34.
Shaffer
,
M. S. P.
, and
Windle
,
A. H.
,
1999
, β€œ
Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites
,”
Adv. Mater. (Weinheim, Ger.)
,
11
, pp.
937
–
941
.
35.
Vigolo
,
B.
,
Penicaud
,
A. P.
,
Couloun
,
C.
,
Sauder
,
S.
,
Pailler
,
R.
,
Journet
,
C.
,
Bernier
,
P.
, and
Poulin
,
P.
,
2000
, β€œ
Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes
,”
Science
,
290
, pp.
1331
–
1334
.
36.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
,
2002
, β€œ
Effects of Nanotube Waviness on the Modulus of Nanotube-Reinforced Polymers
,”
Appl. Phys. Lett.
,
80
(
24
), pp.
4647
–
4649
.
37.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
,
2003
, β€œ
Fiber Waviness in Nanotube-Reinforced Polymer Composites: I. Modulus Predictions Using Effective Nanotube Properties
,”
Compos. Sci. Technol.
,
63
(
11
), pp.
1689
–
1703
.
38.
Bradshaw
,
R. D.
,
Fisher
,
F. T.
, and
Brinson
,
L. C.
,
2003
, β€œ
Fiber Waviness in Nanotube-Reinforced Polymer Composites: II. Modeling via Numerical Approximation of the Dilute Strain Concentration Tensor
,”
Compos. Sci. Technol.
,
63
(
11
), pp.
1705
–
1722
.
39.
Curtin, W. A., 2002, private communication with Y. Huang.
40.
Stephan
,
C.
,
Nguyen
,
T. P.
,
Chapelle
,
M. L.
, and
Lefrant
,
S.
,
2000
, β€œ
Characterization of Single-Walled Carbon Nanotubes-PMMA Composite
,”
Synth. Met.
,
108
, pp.
139
–
149
.
41.
Jones, R. M., 1999, Mechanics of Composite Materials, Taylor & Francis, Philadelphia.
42.
Shi
,
D. L.
,
Feng
,
X. Q.
,
Huang
,
Y.
, and
Hwang
,
K. C.
,
2004
, β€œ
Critical evaluation of the stiffening effect of carbon nanotubes in composites
,”
Key Eng. Mater.
,
261–263
, pp.
1487
–
1492
.
You do not currently have access to this content.