The objective of this work was to use micromechanical finite element models to simulate the static mechanical behavior of a metal matrix composite: a cast Al 359 alloy reinforced with 20% SiC particles, at two different temperatures: room temperature and 150°C. In the simulations, periodic unit cell models incorporating the explicit representation of the matrix, reinforcing particles and precipitated primary silicon crystals in both 2D and 3D were used. Micromechanical models with both idealized and realistic reinforcing particle geometries and distributions were generated. The realistic particle geometries and distributions were inferred from experimental SEM micrographs. The pattern and intensity of the plastic deformation within the matrix was studied and the macroscale behavior of the composite was inferred from average stress and strain values. In order to include the effects of residual stresses due to the processing of the material, a quenching simulation was performed, prior to mechanical loading, and its effects on the macroscopic and microscopic behavior of the MMC was assessed. The effects of introducing the damage mechanisms of ductile void growth and brittle failure of the reinforcing particles was also investigated. The results of the simulations were compared with experimental results for the MMC in terms of macroscopic tensile stress–strain curves and conclusions were drawn.

1.
Forn, A., Martin, E., Baile, M. T., and Bastidas, J. M., 2002, “Corrosion Behavior of AA2124 and AA359 Reinforced with SiC Particles,” 15th International Corrosion Congress, Granada, Spain.
2.
Forn, A., Martin, E., and Nogue, R., 2000, “Characterization and Mechanical Properties of 359+20% SiCp,8th National Con. Heat Treat. Surf., Barcelona, Spain.
3.
Tabernig, B., and Pippan, R., 1998, Brite-Euram MISPOM Project Working Paper UPC/WP/2/3 dated 31 March 1998.
4.
Fiori
,
F.
,
Girardin
,
E.
,
Giuliani
,
A.
,
Lorentzen
,
T.
,
Pyzalla
,
A.
,
Rustichelli
,
F.
, and
Stanic
,
V.
,
2000
, “
Neutron Diffraction Measurements For the Determination of Residual Stresses in MMC Tensile and Fatigue Specimens
,”
Physica B
,
276–278
, pp.
923
924
.
5.
Carrado
,
A.
,
Fiori
,
F.
,
Girardin
,
E.
,
Pirling
,
T.
,
Powell
,
P.
, and
Rustichelli
,
F.
,
2001
, “
Neutron Diffraction Measurements of Residual Stresses in Metal Matrix Composite Samples
,”
Radiat. Phys. Chem.
,
61
, pp.
575
577
.
6.
Suresh, S., Mortensen, A., and Needleman, A., eds., 1993, Fundamentals of Metal Matrix Composites, Butterworth-Heinemann, Stoneham, MA.
7.
Bo¨hm, H. J., 1998, “A Short Introduction to Basic Aspects of Continuum Mechanics,” CDL-FMD Report 3, Institute of Lightweight Structures and Aerospace Engineering, Vienna University of Technology, Austria.
8.
Bo¨hm, H. J., 2003, “Introduction to Continuum Mechanics,” Course Notes For CISM Course on Mechanics of Microstructured Materials, CISM, Udine, Italy.
9.
Llorca, J., 2003, “Deformation and Damage in Particle Reinforced Composites: Experiments and Models,” Course Notes For CISM Course on Mechanics of Microstructured Materials, CISM, Udine, Italy.
10.
McHugh
,
P. E.
,
Asaro
,
R. J.
, and
Shih
,
C. F.
,
1993
, “
Computational Modeling of Metal Matrix Composite Materials—I. Isothermal Deformation Patterns in Ideal Microstructures
,”
Acta Metall. Mater.
,
41
, pp.
1461
1476
.
11.
Christman
,
T.
,
Needleman
,
A.
, and
Suresh
,
S.
,
1989
,
Acta Metall. Mater.
,
37
, pp.
3029
3050
.
12.
Bao
,
G.
,
McMeeking
,
R. M.
, and
Hutchinson
,
J. W.
,
1991
,
Acta Metall. Mater.
,
39
, pp.
1871
1882
.
13.
Weissenbek
,
E.
,
Bohm
,
H. J.
, and
Rammerstorfer
,
F. G.
,
1994
, “
Micromechanical Investigations of Arrangement Effects in Particle Reinforced Metal Matrix Composites
,”
Comput. Mater. Sci.
,
3
, pp.
263
278
.
14.
Llorca
,
J.
,
Suresh
,
S.
, and
Needleman
,
A.
,
1992
, “
An Experimental and Numerical Study of Cyclic Deformation in Metal Matrix Composites
,”
Metall. Trans. A
,
23A
, pp.
919
934
.
15.
Bo¨hm, H. J., 1991, “Computer Based Micromechanical Investigations of the Thermomechanical Behavior of Metal Matrix Composites,” Fortschr.-Ber. VDI Reihe 18 Nr. 101. Du¨sseldorf: VDI-Verlag.
16.
Bruzzi
,
M. S.
,
McHugh
,
P. E.
,
O’Rourke
,
F.
, and
Linder
,
T.
,
2001
, “
Micromechanical Modeling of the Static and Cyclic Loading of an Al 2141—SiC MMC
,”
Int. J. Plast.
,
17
, pp.
565
599
.
17.
Li
,
Y.
, and
Ramesh
,
K. T.
,
1998
, “
Influence of Particle Volume Fraction, Shape, and Aspect Ratio on the Behavior of Particle-Reinforced Metal Matrix Composites at High Rates of Strain
,”
Acta Mater.
,
46
, pp.
5633
5646
.
18.
Fischmeister
,
H.
, and
Karlsson
,
B.
,
1997
, “
Plastizita¨tseigenschaften Grob-zweiphasiger Werkstoffe
,”
Z. Metallkd.
,
68
, pp.
311
327
.
19.
Brockenbrough
,
J. R.
, and
Suresh
,
S.
,
1990
, “
Plastic Deformation of Continuous Fibre-Reinforced Metal-Matrix Composites: Effects of Fibre Shape and Distribution
,”
Acta Metall. Mater.
,
24
, pp.
325
330
.
20.
Li
,
M.
,
Ghosh
,
S.
,
Richmond
,
O.
,
Weiland
,
H.
, and
Rouns
,
T. N.
,
1999
, “
Three Dimensional Characterization and Modeling of Particle Reinforced Metal Matrix Composites, Part I: Quantative Description of Microstructural Morphology
,”
Mater. Sci. Eng., A
,
265
, pp.
153
173
.
21.
Ghosh
,
S.
,
Lee
,
K. H.
, and
Raghavan
,
P.
,
1996
, “
Two Scale Analysis of Heterogeneous Elastic-Plastic Materials With Asymptotic Homogenization and Voronoi Cell Finite Element Model
,”
Comput. Methods Appl. Mech. Eng.
,
132
, pp.
63
116
.
22.
Ghosh
,
S.
, and
Moorthy
,
S.
,
1998
, “
Particle Fracture Simulation in Non-Uniform Microstructures of Metal-Matrix Composites
,”
Acta Mater.
,
46
, pp.
965
982
.
23.
Gusev
,
A. A.
,
1997
, “
Representative Volume Element Size for Elastic Composites: A Numerical Study
,”
J. Mech. Phys. Solids
,
45
, pp.
1449
1459
.
24.
Watt
,
D. F.
,
Xu
,
X. Q.
, and
Lloyd
,
D. J.
,
1996
, “
Effects of Particle Morphology and Spacing on the Strain Fields in a Plastically Deforming Matrix
,”
Acta Metall. Mater.
,
44
, pp.
789
799
.
25.
Bo¨hm
,
H. J.
,
Eckschlager
,
A.
, and
Han
,
W.
,
2002
, “
Multi-Inclusion Unit Cell Models for Metal Matrix Composites With Randomly Oriented Discontinuous Reinforcements
,”
Comput. Mater. Sci.
,
25
, pp.
42
53
.
26.
Bo¨hm
,
H. J.
, and
Han
,
W.
,
2001
, “
Comparisons Between Three-Dimensional and Two-Dimensional Multi-Particle Unit Cell Models For Particle Reinforced Metal Matrix Composites
,”
Modell. Simul. Mater. Sci. Eng.
,
25
, pp.
47
65
.
27.
Hine
,
P. J.
,
Lusti
,
H. R.
, and
Gusev
,
A. A.
,
2002
, “
The Numerical Simulation of the Elastic and Thermoelastic Properties of Short Fibre Composites
,”
Compos. Sci. Technol.
,
62
, pp.
1445
1453
.
28.
Gall
,
K.
,
Horstemeyer
,
M.
,
McDowell
,
D. L.
, and
Fan
,
J.
,
2000
, “
Finite Element of the Stress Distributions Near Damaged Si Particle Clusters in Cast Al–Si Alloys
,”
Mech. Mater.
,
32
, pp.
277
301
.
29.
Eckschlager
,
A.
,
Han
,
W.
, and
Bo¨hm
,
H. J.
,
2002
, “
A Unit Cell Model For Brittle Fracture of Particles Embedded in a Ductile Matrix
,”
Comput. Mater. Sci.
,
25
, pp.
85
91
.
30.
Segurado
,
J.
,
Gonzales
,
C.
, and
Llorca
,
J.
,
2003
, “
A Numerical Investigation of the Effect of Particle Clustering on the Mechanical Properties of Composites
,”
Acta Mater.
,
51
, pp.
2355
2369
.
31.
Llorca
,
J.
, and
Segurado
,
J.
,
2004
, “
Three-Dimensional Multiparticle Cell Simulations of Deformation and Damage in Sphere-Reinforced Composites
,”
Mater. Sci. Eng., A
,
365
, pp.
267
274
.
32.
Gurson, A. L., 1975, “Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation, Growth and Interaction,” Ph.D. Thesis, Division of Engineering, Brown University, Providence, RI.
33.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules For Porous Ductile Materials
,”
J. Eng. Mater. Technol.
,
99
, pp.
2
15
.
34.
HKS, 1997, ABAQUS Theory Manual Version 5.7, Hibbit, Karlsson and Sorensen, Inc., Pawtucket, RI.
35.
HKS, 2003, ABAQUS Users Manuals Version 6.4, Hibbit, Karlsson and Sorensen, Inc., Pawtucket, RI.
36.
Tabernig, B., Pippan, R., Bruzzi, M., McHugh, P., Foulquier, J., Rapoport, A., Fedrigoni, G. P., Powell, P. M., Cook, R., Forn, A., Martin, E., Fiori, F., and Rustichelli, F., 2000, “Modeling of In-Service Fatigue Performance of Particle Reinforced Aluminum Alloys,” Fatigue 2000, EMAS, M. R. Bache, P. A. Blackmore, J. Draper, J. H. Edwards, P. Roberts, J. R. Yates, eds., pp. 93–100.
You do not currently have access to this content.