Discontinuously reinforced aluminum (DRA) is currently used where design considerations include specific stiffness, tailorable coefficient of thermal expansion, or wear resistance. Plastic deformation plays a role in failures due to low cycle fatigue or simple ductile overload. DRA is known to exhibit pressure dependent yielding. Plastic deformation in metals is widely regarded to be incompressible, or very nearly so. A continuum plasticity model is developed that includes a Drucker–Prager pressure dependent yield function, plastic incompressibility via a nonassociative Prandtl–Reuss flow rule, and a generalized Armstrong–Frederick kinematic hardening law. The model is implemented using a return mapping algorithm with backward Euler integration for stability and the Newton method to determine the plastic multiplier. Material parameters are characterized from uniaxial tension and uniaxial compression experimental results. Model predictions are compared to experimental results for a nonproportional compression–shear load path. The tangent stiffness tensor is nonsymmetric because the flow rule is not associated with the yield function, which means that the commonly used algorithms that require symmetric matrices cannot be used with this material model. Model correlations with tension and compression loadings are excellent. Model predictions of shear and nonproportional compression–shear loadings are reasonably good. The nonassociative flow rule could not be validated by comparison of the plastic strain rate direction with the yield function and the flow potential due to scatter in the experimental results. The model is capable of predicting the material response obtained in the experiments, but additional validation is necessary for the condition of high hydrostatic pressure.

1.
Khan
,
A. S.
, and
Huang
,
S.
, 1995,
Continuum Theory of Plasticity
,
Wiley
,
New York
.
2.
Lubliner
,
J.
, 1990,
Plasticity Theory
,
Macmillan
,
New York
.
3.
Chen
,
W. F.
, and
Han
,
D. J.
, 1988,
Plasticity for Structural Engineers
,
Springer
,
New York
.
4.
Spitzig
,
W. A.
,
Sober
,
R. J.
, and
Richmond
,
O.
, 1975, “
Pressure Dependence of Yielding and Associated Volume Expansion in Tempered Martensite
,”
Acta Metall.
0001-6160,
23
, pp.
885
893
.
5.
Spitzig
,
W. A.
,
Sober
,
R. J.
, and
Richmond
,
O.
, 1976, “
The Effect of Hydrostatic Pressure on the Deformation Behavior of Maraging and HY-80 and its Implication for Plasticity
,”
Metall. Trans. A
0360-2133,
A7
, pp.
457
463
.
6.
Spitzig
,
W. A.
, and
Richmond
,
O.
, 1984, “
The Effect of Pressure on the Flow Stress of Metals
,”
Acta Metall.
0001-6160,
32
, pp.
457
463
.
7.
Bulatov
,
V. V.
,
Richmond
,
O.
, and
Glazov
,
M. V.
, 1999, “
An Atomistic Dislocation Mechanism of Pressure-Dependent Plastic Flow in Aluminum
,”
Acta Mater.
1359-6454,
47
, pp.
3507
3514
.
8.
Wilson
,
C. D.
, 2002, “
A Critical Reexamination of Classical Metal Plasticity
,”
J. Appl. Mech.
0021-8936,
69
, pp.
63
68
.
9.
Singh
,
A. P.
,
Padmanabhan
,
K. A.
,
Pandey
,
G. N.
,
Murty
,
G. M. D.
, and
Jha
,
S.
, 2000, “
Strength Differential Effect in Four Commercial Steels
,”
J. Mater. Sci.
0022-2461,
35
, pp.
1379
1388
.
10.
Chait
,
R.
, 1973, “
The Strength Differential of Steel and Ti Alloys as Influenced by Test Temperature and Microstructure
,”
Scr. Metall.
0036-9748,
7
, pp.
351
363
.
11.
Altenbach
,
H.
,
Stoychev
,
G. B.
, and
Tushtev
,
K. N.
, 2001, “
On Elastoplastic Deformation of Grey Cast Iron
,”
Int. J. Plast.
0749-6419,
17
, pp.
719
736
.
12.
Gil
,
C. M.
,
Lissenden
,
C. J.
, and
Lerch
,
B. A.
, 1999, “
Yield of Inconel 718 by Axial-Torsional Loading at Temperatures up to 649°C
,”
J. Test. Eval.
0090-3973,
27
, pp.
327
336
.
13.
Iyer
,
S. K.
, and
Lissenden
,
C. J.
, 2000, “
Initial Anisotropy of Inconel 718: Experiments and Mathematical Representation
,”
J. Eng. Mater. Technol.
0094-4289,
122
, pp.
321
326
.
14.
Lewandowski
,
J. J.
,
Wesseling
,
P.
,
Prabhu
,
N. S.
,
Larose
,
J.
, and
Lerch
,
B. A.
, 2003, “
Strength Differential Measurements in IN-718: Effects of Superimposed Pressure
,”
Metall. Mater. Trans. A
1073-5623,
34A
, pp.
1736
1739
.
15.
Lei
,
X.
, and
Lissenden
,
C. J.
, 2003, “
Tensile, Compressive, and Shear Response of a Particulate Reinforced Aluminum Composite
,”
Composite Materials: Testing and Design, ASTM STP 1436
,
C. E.
Bakis
, ed.,
ASTM International
,
West Conshohocken, PA
, Vol.
14
, pp.
255
272
.
16.
Lissenden
,
C. J.
, and
Lei
,
X.
, 2004, “
A More Comprehensive Method for Yield Locus Construction for Metallic Alloys and Composites
,”
Exp. Mech.
0014-4851,
44
, pp.
10
20
.
17.
Varma
,
V. K.
,
Kamat
,
S. V.
,
Mahajan
,
Y. R.
, and
Kutumbarao
,
V. V.
, 2002, “
Strength Differential Effect in SiCp Reinforced Al Composites
,”
Z. Metallkd.
0044-3093,
93
, pp.
910
912
.
18.
Lewandowski
,
J. J.
, and
Lowhaphandu
,
P.
, 1998, “
Effects of Hydrostatic Pressure on Mechanical Behaviour and Deformation Processing of Materials
,”
Int. Mater. Rev.
0950-6608,
43
, pp.
145
187
.
19.
Vasudevan
,
A. K.
,
Richmond
,
O.
,
Zok
,
F.
, and
Embury
,
J. D.
, 1989, “
The Influence of Hydrostatic Pressure on the Ductility of Al-SiC Composites
,”
Mater. Sci. Eng., A
0921-5093,
A107
, pp.
63
69
.
20.
Lloyd
,
D. J.
, 1994, “
Particle Reinforced Aluminum and Magnesium Matrix Composites
,”
Int. Mater. Rev.
0950-6608,
39
, pp.
1
23
.
21.
Sinclair
,
I.
, and
Gregson
,
P. J.
, 1997, “
Structural Performance of Discontinuous Metal Matrix Composites
,”
Mater. Sci. Technol.
0267-0836,
13
, pp.
709
726
.
22.
Meijer
,
G.
,
Ellyin
,
F.
, and
Xia
,
Z.
, 2000, “
Aspects of Residual Thermal Stress/Strain in Particle Reinforced Metal Matrix Composites
,”
Composites, Part B
1359-8368,
B31
, pp.
29
37
.
23.
Böhm
,
H. J.
, and
Han
,
W.
, 2001, “
Comparisions Between Three-Dimensional and Two-Dimensional Multi-Particle Unit Cell Models for Particle Reinforced Metal Matrix Composites
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
9
, pp.
47
65
.
24.
Shen
,
H.
, and
Lissenden
,
C. J.
, 2002, “
3D Finite Element Analysis of Particle-Reinforced Aluminum
,”
Mater. Sci. Eng., A
0921-5093,
A338
, pp.
271
281
.
25.
Shen
,
H.
, and
Lissenden
,
C. J.
, 2005, “
Stress and Strain Localization Three-Dimensional Modeling for Particle-Reinforced Metal Matrix Composites
,”
Metall. Mater. Trans. A
1073-5623,
36A
, pp.
1653
1660
.
26.
Segurado
,
J.
,
Gonzáles
,
C.
, and
Llorca
,
J.
, 2003, “
A Numerical Investigation of the Effect of Particle Clustering on the Mechanical Properties of Composites
,”
Acta Mater.
1359-6454,
51
, pp.
2355
2369
.
27.
Arsenault
,
R. J.
, and
Wu
,
S. B.
, 1987, “
The Strength Differential and Bauschinger Effects in SiC-Al Composites
,”
Acta Metall.
0001-6160,
96
, pp.
77
88
.
28.
Hirth
,
J. P.
, and
Cohen
,
M.
, 1970, “
On the Strength-Differential Phenomenon in Hardened Steel
,”
Metall. Trans.
0026-086X,
1
, pp.
3
8
.
29.
Drucker
,
D. C.
, 1973, “
Plasticity Theory, Strength-Differential (SD) Phenomenon, and Volume Expansion in Metals and Plastics
,”
Metall. Trans.
0026-086X,
4
, pp.
667
673
.
30.
Casey
,
J.
, and
Sullivan
,
T. D.
, 1985, “
Pressure Dependency, Strength Differential Effect, and Plastic Volume Expansion in Metals
,”
Int. J. Plast.
0749-6419,
1
, pp.
39
61
.
31.
Stoughton
,
T. B.
, 2002, “
A Non-Associated Flow Rule for Sheet Metal Forming
,”
Int. J. Plast.
0749-6419,
18
, pp.
687
714
.
32.
Stoughton
,
T. B.
, 2003, “
A Pressure-Sensitive Yield Criterion Under a Non-Associated Flow Rule for Sheet Metal Forming
,”
Int. J. Plast.
0749-6419,
19
, pp.
1
27
.
33.
Mroz
,
Z.
, 1963, “
Non-Associated Flow Laws in Plasticity
,”
J. Mec.
0021-7832,
2
, pp.
21
42
.
34.
Maier
,
G.
, 1970, “
A Minimum Principle for Incremental Elastoplasticity With Non-Associated Flow Laws
,”
J. Mech. Phys. Solids
0022-5096,
18
, pp.
319
330
.
35.
Lubarda
,
V. A.
,
Mastilovic
,
S.
, and
Knap
,
J.
, 1996, “
Some Comments on Plasticity Postulates and Non-Associative Flow Rules
,”
Int. J. Mech. Sci.
0020-7403,
38
, pp.
247
258
.
36.
Stoughton
,
T. B.
, and
Yoon
,
J. W.
, 2006, “
Review of Drucker’s Postulate and the Issue of Plastic Stability in Metal Forming
,”
Int. J. Plast.
0749-6419,
22
, pp.
391
433
.
37.
Drucker
,
D. C.
, and
Prager
,
W.
, 1952, “
Soil Mechanics and Plastic Analysis or Limit Design
,”
Q. Appl. Math.
0033-569X,
10
, pp.
157
165
.
38.
Chaboche
,
J. L.
, 1983, “
On the Constitutive Equations of Materials Under Monotonic or Cyclic Loadings
,”
Rech. Aerosp.
0034-1223,
5
, pp.
31
43
.
39.
Simo
,
J. C.
, and
Taylor
,
R. L.
, 1985, “
Consistent Tangent Operators for Rate-Independent Elastoplasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
48
, pp.
101
118
.
40.
Hibbitt, Karlsson, and Sorensen, Inc.
, 2000,
ABAQUS/Standard User Manual
, version 6.1,
Pawtucket
,
RI
.
41.
Hughes
,
T. J. R.
, and
Winget
,
J.
, 1980, “
Finite Rotation Effects in Numerical Integration of Rate Constitutive Equations Arising in Large-Deformation Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
15
, pp.
1862
1867
.
42.
Lei
,
X.
, 2004, “
Plastic Flow in a Discontinuously Reinforced Aluminum Composite Under Combined Loads
,” Ph.D. thesis, The Pennsylvania State University, University Park, PA.
You do not currently have access to this content.