The fatigue behavior and residual strength of postimpacted GLARE 4-3/2, GLARE 5-2/1, and monolithic aluminum 2024-T3 alloy were investigated experimentally. Drop-weight impact was applied at a variety of energy levels to inflict a barely visible impact damage, a clearly visible impact damage, and a penetration damage. After the impact test, constant-amplitude tension-tension fatigue was done to delineate the modes of damage initiation and growth and the effect of damage on fatigue life and residual strength. The results showed that GLARE laminates exhibit superior postimpact fatigue durability when compared with the monolithic 2024-T3 aluminum alloy.

1.
Wu
,
G.
, and
Yang
,
J. M.
, 2005, “The Mechanical Behavior of GLARE Laminates for Aircraft Structures,” Journal of the Minerals Metals and Materials Society, 57(1), pp. 72–80. 1047-4838
2.
Vermeeren
,
C. A. J. R.
, 2003, “
An Historic Overview of the Development of Fiber Metal Laminates
,”
Appl. Compos. Mater.
,
10
(
4/5
), pp.
189
205
. 0929-189X
3.
Krishnakumar
,
S.
, 1994, “
Fiber Metal Laminates—The Synthesis of Metals and Composites
,”
Mater. Manuf. Processes
,
9
(
2
), pp.
295
354
. 1042-6914
4.
Volt
,
A.
,
Vogelesang
,
L. B.
, and
de Vries
,
T. J.
, 1999, “Towards Application of Fiber Metal Laminates in Larger Aircraft,” Aircraft Engineering and Aerospace Technology: An International Journal, 71(6), pp.
55
57
.
5.
Vogelesang
,
L. B.
, and
Vlot
,
A.
, 2000, “
Development of Fibre Metal Laminates for Advanced Aerospace Materials
,”
J. Mater. Process. Technol.
,
103
(
1
), pp.
1
5
. 0924-0136
6.
Afaghi-Khatibi
,
A.
,
Ye
,
L.
, and
Mai
,
Y. W.
, 2003, “Hybrids and Sandwiches,” Comprehensive Composite Materials, 2, pp.
249
290
.
7.
Asundi
,
A.
, and
Choi
,
Alta Y. N.
, 1997, “
Fiber Metal Laminates: An Advanced Material for Future Aircraft
,”
J. Mater. Process. Technol.
,
63
(
1/3
), pp.
384
394
. 0924-0136
8.
Vermeeren
,
C. A. J. R.
, 2003, “
An Historic Overview of the Development of Fiber Metal Laminates
,”
Appl. Compos. Mater.
,
10
, pp.
189
205
. 0929-189X
9.
Wu
,
G.
, 2007, “
The Impact Properties and Damage Tolerance and of Bidirectionally Reinforced Fiber Metal Laminates
,”
J. Mater. Sci.
,
42
, pp.
948
957
. 0022-2461
10.
Johnson
,
W. S.
, 1986, “
Impact and Residual Fatigue Behavior of ARALL and AS6/5245 Composite Materials
,” NASA Technical Memorandum–89013,
Langley Research Center
, Hampton, VA 23665.
11.
Laliberte
,
J. F.
,
Poon
,
C.
,
Straznicky
,
P. V.
, and
Fahr
,
A.
, 2002, “
Post-Impact Fatigue Damage Growth in Fiber-Metal Laminates
,”
Int. J. Fatigue
,
24
(
2/4
), pp.
249
256
.
12.
Vlot
,
A.
, 1993, “
Low Velocity Impact Loading on Fibre Reinforced Aluminum Laminates (ARALL or GLARE) and Other Aircraft Sheet Materials
,” Ph.D. Dissertation, Delft Institute of Technology, Delft, The Netherlands.
13.
Alderliesten
,
R. C.
,
Hagenbeek
,
M.
,
Homan
,
J. J.
,
Hooijmeijer
,
P. A.
,
de Vries
,
T. J.
, and
Vermeeren
,
C. A. J. R.
, 2003, “
Fatigue and Damage Tolerance of GLARE
,”
Appl. Compos. Mater.
,
10
(
4/5
), pp.
223
242
. 0929-189X
14.
Homan
,
J. J.
, 2005, “
Fatigue Initiation in Fibre Metal Laminates
,”
Int. J. Fatigue
,
28
(
4
), pp.
1
9
.
15.
Vogelesang
,
L. B.
,
Schijve
,
J.
, and
Fredell
,
R.
, 1995, “
Fiber Metal Laminates: Damage Tolerant Aerospace Materials
,”
Case Studies in Manufacturing With Advanced Materials
,
Elsevier
,
Amsterdam
, Vol.
2
, pp.
253
271
.
16.
Marissen
,
R.
, 1987, “
Fatigue Mechanisms in ARALL: A Fatigue Resistant Hybrid Aluminum Aramid Composite Material
,” Fatigue’87, Charlottesville, VA, June 28–July 3, pp.
1271
1279
.
17.
Alderliesten
,
R. C.
, and
Homan
,
J. J.
, 2006, “
Fatigue and Damage Tolerance Issues of Glare in Aircraft Structures
,”
Int. J. Fatigue
,
28
(
10
), pp.
1116
1123
.
You do not currently have access to this content.