Spot-weld joints are commonly used to fasten together metal sheets. Because fatigue fracture is the most critical failure mode for these joints under fluctuating loads, understanding their fatigue failure behavior and assessment of their fatigue lives are crucial from the viewpoint of failure prevention in design. In this study, a series of experiments was conducted to study the fatigue failure of spot-welded modified tensile-shear specimens made of a low carbon steel. Two different types of resistance spot welding were investigated (manual and automated). Tests were repeated under different load ranges, and the corresponding fatigue lives were determined. The specimens were also examined under an optical microscope. In the numerical part of this study, a finite element analysis was carried out using commercial software, ANSYS, to determine the stress and strain states within the specimens. The material nonlinearity, local plastic deformations around the welds during loading, and the residual stresses and strains developed after unloading as a result of plastic deformations were taken into account. Based on the predicted stress and strain states, fatigue analyses were performed using several models for life assessment. Then, the measured and predicted fatigue lives were compared, and the suitability of the models was discussed. Among the strain-based models, Coffin–Manson and Morrow’s means stress models yielded the best predictions.

1.
Thornton
,
P. H.
,
Krause
,
A. R.
, and
Davies
,
R. G.
, 1996, “
The Aluminum Spot Weld
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
75
(
3
), pp.
101s
108s
.
2.
Pollard
,
B.
, 1982, “
Fatigue Strength of Spot Welds in Titanium-Bearing HSLA Steels
,”
SAE International Congress and Exposition
, Detroit, MI.
3.
Barkey
,
M. E.
,
Kang
,
H.
, and
Lee
,
Y. L.
, 2001, “
Failure Modes of Single Resistance Spot Welded Joints Subjected to Combined Fatigue Loading
,”
Int. J. Mater. Prod. Technol.
0268-1900,
16
(
6/7
), pp.
510
527
.
4.
Rathbun
,
R. W.
,
Matlock
,
D. K.
, and
Speer
,
J. G.
, 2003, “
Fatigue Behavior of Spot-Welded High-Strength Sheet Steels
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
82
(
8
), pp.
207s
218s
.
5.
Chao
,
Y. J.
, 2003, “
Failure Mode of Spot Welds: Interfacial Versus Pullout
,”
Sci. Technol. Weld. Joining
1362-1718,
8
(
2
), pp.
133
137
.
6.
Deng
,
X.
,
Chen
,
W.
, and
Shi
,
G.
, 2000, “
Three-Dimensional Finite Element Analysis of the Mechanical Behavior of Spot Welds
,”
Finite Elem. Anal. Design
,
35
, pp.
17
39
. 0168-874X
7.
Wang
,
P. C.
, and
Ewing
,
K. M.
, 1994, “
Effect of Weld Design on the Fatigue Strength of Laser and Resistance Spot Welded Tubular T-Joints for Automotive Applications
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
73
(
9
), pp.
209s
217s
.
8.
Chao
,
Y. J.
, 2003, “
Ultimate Strength and Failure Mechanism of Resistance Spot Weld Subjected to Tensile, Shear, or Combined Tensile/Shear Loads
,”
ASME J. Eng. Mater. Technol.
0094-4289,
125
, pp.
125
132
.
9.
Linder
,
J.
, and
Melander
,
A.
, 1998, “
Fatigue Strength of Spot Welded Stainless Sheet Steels Exposed to 3% NaCl Solution
,”
Int. J. Fatigue
0142-1123,
20
(
5
), pp.
383
388
.
10.
Henrysson
,
H. F.
, 2000, “
Fatigue Life Prediction of Spot Welds Using Coarse FE Meshes
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
23
(
9
), pp.
737
746
.
11.
Di Fant-Jaeckels
,
H.
, and
Galtier
,
A.
, 2001, “
Fatigue Lifetime Prediction Model for Spot Welded Structures
,”
Rev. Metall./Cah. Inf. Tech.
0035-1563,
1
, pp.
83
95
.
12.
Xu
,
S.
, and
Deng
,
X.
, 2004, “
An Evaluation of Simplified Finite Element Models for Spot Welded Joints
,”
Finite Elem. Anal. Design
,
40
, pp.
1175
1194
. 0168-874X
13.
Wonseok
,
J.
,
Bae
,
D.
, and
Sohn
,
I.
, 2004, “
Fatigue Design of Various Type Spot Welded Lap Joints Using the Maximum Stress
,”
KSME Int. J.
1226-4865,
18
(
1
), pp.
106
113
.
14.
Sheppard
,
S. D.
, and
Strange
,
M.
, 1992, “
Fatigue Life Estimation in Resistance Spot Welds: Initiation and Early Growth Phase
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
15
(
6
), pp.
531
549
.
15.
Radaj
,
D.
, 1996, “
Theory of Forces and Stresses in Spot Welded Overlap Joints
,”
Arch. Appl. Mech.
,
67
, pp.
22
34
. 0376-9429
16.
Pook
,
L. P.
, 1975, “
Fracture Mechanics Analysis of the Fatigue Behaviour of Spot Welds
,”
Int. J. Fract.
0376-9429,
11
, pp.
173
176
.
17.
Pan
,
N.
, and
Sheppard
,
S.
, 2002, “
Spot Welds Fatigue Life Prediction With Cyclic Strain Range
,”
Int. J. Fatigue
0142-1123,
24
, pp.
519
528
.
18.
Pan
,
N.
, 2000, “
Fatigue Life Study of Spot Welds
,” Ph.D. thesis, Stanford University, Stanford, CA.
19.
Kan
,
Y. R.
, 1976, “
Fatigue Resistance of Spotwelds—An Analytical Study
,”
Met. Eng. Q.
0026-0967,
16
(
4
), pp.
26
36
.
20.
Gero
,
B. M.
, 1997, “
Acousto-Ultrasonic Evaluation of Cyclic Fatigue of Spot Welded Structures
,” MS thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
21.
Ertas
,
A. H.
, 2004, “
Fatigue Behavior of Spot Welds
,” MS thesis, Bogazici University, Istanbul, Turkey.
22.
El-Sayed
,
M. E. M.
,
Stawiarski
,
T.
, and
Fruntiger
,
R.
, 1996, “
Fatigue Analysis of Spot-Welded Joints Under Variable Amplitude Load History
,”
Eng. Fract. Mech.
,
55
(
3
), pp.
363
369
. 0013-7944
23.
Davidson
,
J. A.
, 1982, “
A Review of the Fatigue Properties of Spot-Welded Sheet Steels
,”
SAE International Congress and Exposition
, Detroit, MI.
24.
Dannbauer
,
H.
,
Gaier
,
C.
, and
Hofwimmer
,
K.
, 2005, “
Fatigue Analysis of Welding Seams and Spot Joints in Automotive Structures
,”
SAE International Congress and Exposition
, Detroit, MI.
25.
Adib
,
H.
,
Gilbert
,
J.
, and
Pluvinage
,
G.
, 2004, “
Fatigue Life Duration Prediction for Welded Spots by Volumetric Method
,”
Int. J. Fatigue
0142-1123,
26
, pp.
81
94
.
26.
Hou
,
Z.
,
Wang
,
Y.
,
Li
,
C.
, and
Chen
,
C.
, 2006, “
An Analysis of Resistance Spot Welding
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
85
(
3
), pp.
36
40
.
27.
Socie
,
D. F.
, 1977, “
Fatigue-Life Prediction Using Local Stress-Strain Concepts
,”
Exp. Mech.
0014-4851,
17
, pp.
50
56
.
28.
Zhang
,
S.
, 2001, “
Approximate Stress Formulas for a Multiaxial Spot Weld Specimen
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
80
(
8
), pp.
201s
203s
.
29.
Peeker
,
E.
, and
Niemi
,
E.
, 1999, “
Fatigue Crack Propagation Model Based on a Local Strain Approach
,”
J. Constr. Steel Res.
0143-974X,
49
, pp.
139
155
.
30.
Roessle
,
M. L.
, and
Fatemi
,
A.
, 2000, “
Strain-Controlled Fatigue Properties of Steels and Some Simple Approximations
,”
Int. J. Fatigue
0142-1123,
22
, pp.
495
511
.
31.
Roessle
,
M. L.
,
Fatemi
,
A.
, and
Khosrovaneh
,
A. K.
, 1999, “
Variation in Cyclic Deformation and Strain-Controlled Fatigue Properties Using Different Curve Fitting and Measurement Techniques
,”
SAE International Congress and Exposition
, Detroit, MI.
32.
Cooper
,
J. F.
, and
Smith
,
R. A.
, 1985, “
The Measurement of Fatigue Cracks at Spot Welds
,”
Int. J. Fatigue
0142-1123,
3
, pp.
137
140
.
33.
Davidson
,
J. A.
, and
Imhof
,
E. J.
, 1983, “
A Fracture Mechanics and System-Stiffness Approach to Fatigue Performance of Spot-Welded Sheet Steels
,”
SAE International Congress and Exposition
, Detroit, MI.
34.
Newman
,
J. A.
, and
Dowling
,
N. E.
, 1998, “
A Crack Growth Approach to Life Prediction of Spot-Welded Lap Joints
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
21
, pp.
1123
1132
.
35.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
, 2001,
Metal Fatigue in Engineering
,
Wiley-Interscience
,
New York
.
36.
Suresh
,
S.
, 2004,
Fatigue of Materials
,
Cambridge University Press
,
Cambridge
.
37.
Cui
,
W.
, 2002, “
A State of the Art Review on Fatigue Life Prediction Methods for Metal Structures
,”
J. Mar. Sci. Technol.
0948-4280,
7
, pp.
43
56
.
38.
Schijve
,
J.
, 2001,
Fatigue of Structures and Materials
,
Wiley-Interscience
,
New York
.
39.
Zhou
,
M.
,
Hu
,
S. J.
, and
Zhang
,
H.
, 1999, “
Critical Specimen Sizes for Tensile-Shear Testing of Steel Sheets
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
78
(
9
), pp.
305s
313s
.
40.
Ong
,
J. H.
, 1993, “
An Improved Technique for the Prediction of Axial Fatigue Life From Tensile Data
,”
Int. J. Fatigue
0142-1123,
15
(
3
), pp.
213
219
.
41.
Gean
,
A.
,
Westgate
,
A.
,
Kucza
,
J. C.
, and
Ehrstrom
,
J. C.
, 1999, “
Static and Fatigue Behavior of Spot-Welded 5182-O Aluminum Alloy Sheet
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
78
(
3
), pp.
90s
96s
.
42.
Achintya
,
H.
, and
Sankaran
,
M.
, 2000,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
43.
Tryon
,
R. G.
, and
Cruse
,
T. A.
, 1998, “
A Reliability-Based Model to Predict Scatter in Fatigue Crack Nucleation Life
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
21
, pp.
257
267
.
44.
Wirsching
,
P. H.
, 2006, “
Application of Reliability Methods to Fatigue Analysis and Design
,”
Recent Developments in Reliability-Based Civil Engineering
,
World Scientific
,
New York
, pp.
125
140
.
45.
ANSYS User’s Manual, Version 9.0, ANSYS Software Inc., 2004.
46.
Salvini
,
P.
,
Vivio
,
F.
, and
Vullo
,
V.
, 2000, “
A Spot Weld Finite Element for Structural Modeling
,”
Int. J. Fatigue
0142-1123,
22
(
8
), pp.
645
656
.
47.
Chang
,
B.
,
Shi
,
Y.
, and
Dong
,
S.
, 1999, “
Comparative Studies on Stresses in Weld-Bonded, Spot-Welded, and Adhesive-Bonded Joints
,”
J. Mater. Process. Technol.
,
87
, pp.
230
236
. 0924-0136
You do not currently have access to this content.