Nucleation of fatigue cracks at nonmetallic primary inclusions in high cycle fatigue of martensitic steel is computationally investigated. We explore the capabilities of an elastic interphase material adhered to the inclusion surface to alter the driving force for fatigue crack nucleation in the matrix. By varying the elastic stiffness of the encapsulating interphase, the stresses and cyclic plastic strains are examined in the matrix in the proximity of a partially debonded inclusion, a worst case scenario for nucleation. The matrix is modeled as elastic-plastic with pure kinematic hardening expressed in a hardening minus dynamic recovery format. The inclusion and interphase are modeled as isotropic linear elastic. An idealized spherical, homogeneous inclusion is considered to facilitate parametric study. A nonlocal average value of the maximum plastic shear strain amplitude was used in a modified form of the Fatemi–Socie parameter in the proximity of inclusions as a fatigue indicator parameter to facilitate comparative parametric study of potency for crack nucleation.

1.
McDowell
,
D. L.
, 1997, “
Engineering Model for Propagation of Small Cracks in Fatigue
,”
Eng. Fract. Mech.
0013-7944,
56
(
3
), pp.
357
377
.
2.
McDowell
,
D. L.
, 2007, “
Simulation-Based Strategies for Microstructure-Sensitive Fatigue Modeling
,”
Mater. Sci. Eng., A
,
468–470
, pp.
4
14
. 0921-5093
3.
Kunio
,
T.
,
Shimizu
,
M.
,
Yamada
,
K.
,
Sakura
,
K.
, and
Yamamoto
,
T.
, 1981, “
Early Stage of Fatigue Crack Growth in Martensitic Steel
,”
Int. J. Fract.
,
17
(
2
), pp.
111
119
. 0376-9429
4.
Melander
,
A.
, 1997, “
Finite Element Study of Short Cracks With Different Inclusion Types Under Rolling Contact Fatigue Load
,”
Int. J. Fatigue
0142-1123,
19
(
1
), pp.
13
24
.
5.
Gall
,
K.
,
Horstemeyer
,
M. F.
,
Degner
,
B. W.
,
McDowell
,
D. L.
, and
Jinghong
,
F.
, 2001, “
On the Driving Force for Fatigue Crack Formation From Inclusions and Voids in a Cast A356 Aluminium Alloy
,”
Int. J. Fract.
,
108
(
3
), pp.
207
233
. 0376-9429
6.
Shenoy
,
M. M.
,
Kumar
,
R. S.
, and
McDowell
,
D. L.
, 2005, “
Modeling Effects of Nonmetallic Inclusions on LCF in DS Nickel-Base Superalloys
,”
Int. J. Fatigue
0142-1123,
27
(
2
), pp.
113
127
.
7.
Al-Ostaz
,
A.
, and
Jasiuk
,
I.
, 1997, “
Influence of Interface and Arrangement of Inclusions on Local Stresses in Composite Materials
,”
Acta Mater.
1359-6454,
45
(
10
), pp.
4131
4143
.
8.
Tursun
,
G.
,
Weber
,
U.
,
Soppa
,
E.
, and
Schmauder
,
S.
, 2006, “
The Influence of Transition Phases on the Damage Behaviour of an Al/10vol.%SiC Composite
,”
Comput. Mater. Sci.
,
37
(
1–2
), pp.
119
133
. 0927-0256
9.
Sevostianov
,
I.
, and
Kachanov
,
M.
, 2007, “
Effect of Interphase Layers on the Overall Elastic and Conductive Properties of Matrix Composites. Applications to Nanosize Inclusion
,”
Int. J. Solids Struct.
,
44
(
3–4
), pp.
1304
1315
. 0020-7683
10.
Hughes
,
J. D. H.
, 1991, “
Carbon Fibre/Epoxy Interface. A Review
,”
Compos. Sci. Technol.
0266-3538,
41
(
1
), pp.
13
45
.
11.
Kim
,
K.
, and
Sudak
,
L. S.
, 2004,
A Three-Phase Circular Inclusion With a Sliding Interface and a Radial Matrix Crack
,
High Performance Structures and Materials II
,
Ancona, Italy
, pp.
147
156
.
12.
Lombardo
,
N.
, 2005, “
Effect of an Inhomogeneous Interphase on the Thermal Expansion Coefficient of a Particulate Composite
,”
Compos. Sci. Technol.
,
65
(
14
), pp.
2118
2128
. 0266-3538
13.
Benveniste
,
Y.
,
Dvorak
,
G. J.
, and
Chen
,
T.
, 1989, “
Stress Fields in Composites With Coated Inclusions
,”
Mech. Mater.
0167-6636,
7
(
4
), pp.
305
317
.
14.
Wu
,
Y.
, and
Dong
,
Z.
, 1995, “
Three-Dimensional Finite Element Analysis of Composites With Coated Spherical Inclusions
,”
Mater. Sci. Eng., A
0921-5093,
203
(
1–2
), pp.
314
323
.
15.
Kim
,
K.
, and
Sudak
,
L. J.
, 2005, “
Interaction Between a Radial Matrix Crack and a Three-Phase Circular Inclusion With Imperfect Interface in Plane Elasticity
,”
Int. J. Fract.
0376-9429,
131
(
2
), pp.
155
172
.
16.
Cheeseman
,
B. A.
, and
Santare
,
M. H.
, 2001, “
The Effect of the Interphase on Crack-Inclusion Interactions
,”
Int. J. Fract.
,
109
(
3
), pp.
303
323
. 0376-9429
17.
Liu
,
Y. W.
,
Fang
,
Q. H.
, and
Jiang
,
C. P.
, 2004, “
A Piezoelectric Screw Dislocation Interacting With an Interphase Layer Between a Circular Inclusion and the Matrix
,”
Int. J. Solids Struct.
,
41
(
11–12
), pp.
3255
3274
. 0020-7683
18.
Cheeseman
,
B. A.
, and
Santare
,
M. H.
, 2002, “
Thermal Residual Stress and Interphase Effects on Crack-Inclusion Interactions
,”
J. Compos. Mater.
0021-9983,
36
(
5
), pp.
553
569
.
19.
Xiao
,
Z. M.
, and
Chen
,
B. J.
, 2001, “
Stress Intensity Factor for a Griffith Crack Interacting With a Coated Inclusion
,”
Int. J. Fract.
,
108
(
3
), pp.
193
205
. 0376-9429
20.
Wang
,
X.
, and
Shen
,
Y. P.
, 2002, “
An Edge Dislocation in a Three-Phase Composite Cylinder Model With a Sliding Interface
,”
ASME J. Appl. Mech.
0021-8936,
69
(
4
), pp.
527
538
.
21.
Shiozawa
,
K.
,
Morii
,
Y.
,
Nishino
,
S.
, and
Lu
,
L.
, 2006, “
Subsurface Crack Initiation and Propagation Mechanism in High-Strength Steel in a Very High Cycle Fatigue Regime
,”
Int. J. Fatigue
0142-1123,
28
(
11
), pp.
1521
1532
.
22.
Kuhlmann-Wilsdorf
,
D.
, and
Thomason
,
P. F.
, 1982, “
Role of Vacant Lattice Sites in the Low-Amplitude Fatigue Failure at Inclusions in Steel
,”
Acta Metall.
,
30
(
6
), pp.
1243
1245
. 0001-6160
23.
Lankford
,
J.
, 1976, “
Inclusion-Matrix Debonding and Fatigue Crack Initiation in Low Alloy Steel
,”
Int. J. Fract.
,
12
(
1
), pp.
155
156
. 0376-9429
24.
Murakami
,
Y.
,
Kodama
,
S.
, and
Konuma
,
S.
, 1989, “
Quantitative Evaluation of Effects of Non-Metallic Inclusions on Fatigue Strength of High Strength Steels. I. Basic Fatigue Mechanism and Evaluation of Correlation Between the Fatigue Fracture Stress and the Size and Location of Non-Metallic Inclusions
,”
Int. J. Fatigue
0142-1123,
11
(
5
), pp.
291
298
.
25.
Tiemens
,
B. L.
, 2006, “
Performance Optimization and Computational Design of Ultra-High Strength Gear Steels
,” Ph.D. thesis, Northwestern University, Evanston, IL.
26.
Gubenko
,
S. I.
, 2006, “
Effect of “Nonmetallic Inclusion-Matrix” Phase Boundaries on the Cohesive Resistance of Steel
,”
Metal Science and Heat Treatment
,
48
(
1–2
), pp.
13
18
. 0026-0673
27.
Miao
,
P.
, and
Knott
,
J. F.
, 2004, “
Formation of Sulphide ‘Patches’ on Inclusions in C-Mn Steel Weld Metal
,”
Mater. Sci. Technol.
0267-0836,
20
(
11
), pp.
1440
1446
.
28.
Freund
,
L. B.
, and
Suresh
,
S.
, 2003,
Thin Film Materials: Stress, Defect Formation and Surface Evolution
,
Cambridge University Press
,
London
.
29.
Pei
,
Y. T.
,
Song
,
G. M.
,
Sloof
,
W. G.
, and
De Hosson
,
J. T. M.
, 2007, “
A Methodology to Determine Anisotropy Effects in Non-Cubic Coatings
,”
Surf. Coat. Technol.
,
201
(
16–17
), pp.
6911
6916
. 0257-8972
30.
Luo
,
F.
,
Gao
,
K.
,
Pang
,
X.
,
Yang
,
H.
,
Qiao
,
L.
, and
Wang
,
Y.
, 2008, “
Characterization of the Mechanical Properties and Failure Modes of Hard Coatings Deposited by RF Magnetron Sputtering
,”
Surf. Coat. Technol.
,
202
(
14
), pp.
3354
3359
. 0257-8972
31.
ABAQUS, 2005, HKS Inc., Providence, RI, Version 6.5.
32.
ABAQUS/Standard User’s Manual, 2005, HKS Inc., Providence, RI, Version 6.5.
33.
Socie
,
D.
, 1993,
Critical Plane Approaches for Multiaxial Fatigue Damage Assessment
,
ASTM
,
San Diego, CA
, pp.
7
36
.
34.
McDowell
,
D. L.
, 1996, “
Multiaxial Fatigue Strength
,”
ASM Handbook, Fatigue and Fracture
, Vol.
19
,
ASM International
,
Materials Park, OH
, pp.
263
273
.
35.
You
,
B. -R.
, and
Lee
,
S. -B.
, 1996, “
Critical Review on Multiaxial Fatigue Assessments of Metals
,”
Int. J. Fatigue
0142-1123,
18
(
4
), pp.
235
244
.
36.
Fatemi
,
A.
, and
Socie
,
D.
, 1988, “
A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
11
, pp.
149
165
.
37.
McDowell
,
D. L.
, and
Berard
,
J.-Y.
, 1992, “
ΔJ-Based Approach to Biaxial Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
15
(
8
), pp.
719
741
.
38.
Lamba
,
H. S.
, 1975, “
J-Integral Applied to Cyclic Loading
,”
Eng. Fract. Mech.
0013-7944,
7
(
4
), pp.
693
703
.
39.
Dowling
,
N. E.
, and
Iyyer
,
N. S.
, 1987, “
Fatigue Crack Growth and Closure at High Cyclic Strains
,”
Mater. Sci. Eng.
,
96
, pp.
99
107
. 0025-5416
40.
El Haddad
,
M. H.
,
Dowling
,
N. E.
,
Topper
,
T. H.
, and
Smith
,
K. N.
, 1980, “
J Integral Applications for Short Fatigue Cracks at Notches
,”
Int. J. Fract.
0376-9429,
16
(
1
), pp.
15
30
.
41.
McDowell
,
D. L.
, 1997, “
Multiaxial Small Fatigue Crack Growth in Metals
,”
Int. J. Fatigue
0142-1123,
19
, pp.
127
135
.
42.
Shenoy
,
M.
,
Zhang
,
J.
, and
McDowell
,
D. L.
, 2007, “
Estimating Fatigue Sensitivity to Polycrystalline Ni-Base Superalloy Microstructures Using a Computational Approach
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
30
(
10
), pp.
889
904
.
43.
Jiang
,
Y.
,
Hertel
,
O.
, and
Vormwald
,
M.
, 2007, “
An Experimental Evaluation of Three Critical Plane Multiaxial Fatigue Criteria
,”
Int. J. Fatigue
0142-1123,
29
(
8
), pp.
1490
1502
.
44.
Kim
,
K. S.
, and
Park
,
J. C.
, 1999, “
Shear Strain Based Multiaxial Fatigue Parameters Applied to Variable Amplitude Loading
,”
Int. J. Fatigue
0142-1123,
21
(
5
), pp.
475
483
.
45.
Findley
,
K. O.
, and
Saxena
,
A.
, 2006, “
Low Cycle Fatigue in Rene 88dt at 650 C: Crack Nucleation Mechanisms and Modeling
,”
Metall. Mater. Trans.
,
37
(
5
), pp.
1469
1475
. 1073-5623
46.
Chen
,
X.
,
Gao
,
Q.
, and
Sun
,
X. F.
, 1994, “
Damage Analysis of Low-Cycle Fatigue Under Non-Proportional Loading
,”
Int. J. Fatigue
0142-1123,
16
(
3
), pp.
221
225
.
47.
Kwon
,
J. D.
, and
Park
,
J. C.
, 2004, “
Multiaxial Fatigue Life Prediction of Duplex Stainless Steels With Thermal Aging at 430°C Under Axial-Torsional Load
,”
Key Eng. Mater.
,
270–273
, pp.
1183
1188
. 1013-9826
48.
Reis
,
L.
, and
De Freitas
,
M.
, 2006, “
Analytical and Experimental Studies on Fatigue Crack Path Under Complex Multi-Axial Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
29
(
4
), pp.
281
289
.
49.
Venkataraman
,
G.
,
Chung
,
Y. W.
, and
Mura
,
T.
, 1991, “
Application of Minimum Energy Formalism in a Multiple Slip Band Model for Fatigue. I. Calculation of Slip Band Spacings
,”
Acta Metall. Mater.
,
39
(
11
), pp.
2621
2629
. 0956-7151
50.
Venkataraman
,
G.
,
Chung
,
Y. W.
, and
Mura
,
T.
, 1991, “
Application of Minimum Energy Formalism in a Multiple Slip Band Model for Fatigue. II. Crack Nucleation and Derivation of a Generalised Coffin-Manson Law
,”
Acta Metall. Mater.
,
39
(
11
), pp.
2631
2638
. 0956-7151
52.
Hsin-Chang
,
T.
, and
Weileun
,
F.
, 2003, “
Determining the Poisson’s Ratio of Thin Film Materials Using Resonant Method
,”
Sens. Actuators, A
0924-4247,
A103
(
3
), pp.
377
383
.
You do not currently have access to this content.