We review He ion induced radiation damage in several metallic multilayer systems, including Cu/V, Cu/Mo, Fe/W, and Al/Nb up to a peak dose of several displacements per atom (dpa). Size dependent radiation damage is observed in all systems. Nanolayer composites can store a very high concentration of He. Layer interfaces promote the recombination of opposite type of point defects and hence reduce the accumulative defect density, swelling, and lattice distortion. Interfaces also alleviate radiation hardening substantially. The chemical stability of interfaces is an important issue when considering the design of radiation tolerant nanolayer composites. Immiscible and certain miscible systems possess superior stability against He ion irradiation. Challenge and future directions are briefly discussed.

References

1.
Zinkle
,
S. J.
, and
Singh
,
B. N.
,
2006
, “
Microstructure of Neutron-Irradiated Iron Before and After Tensile Deformation
,”
J. Nucl. Mater.
,
351
(1-3)
, pp.
269
284
.10.1016/j.jnucmat.2006.02.031
2.
Hashimoto
,
N.
,
Byun
,
T. S.
,
Farrell
,
K.
, and
Zinkle
,
S. J.
,
2004
, “
Deformation Microstructure of Neutron-Irradiated Pure Polycrystalline Metals
,”
J. Nucl. Mater.
,
329-333(B)
, pp.
947
952
.10.1016/j.jnucmat.2004.04.063
3.
Golubov
,
S. I.
,
Singh
,
B. N.
, and
Trinkaus
,
H.
, “
Defect Accumulation in fcc and bcc Metals and Alloys Under Cascade Damage Conditions—Towards a Generalisation of the Production Bias Model
,”
2000
,
J. Nucl. Mater.
,
276
(1-3)
, pp.
78
89
.10.1016/S0022-3115(99)00171-3
4.
Alonso
,
E.
,
Caturla
,
M.-J.
,
Diaz de la Rubia
,
T.
, and
Perlado
,
J. M.
,
2000
, “
Simulation of Damage Production and Accumulation in Vanadium
,”
J. Nucl. Mater.
,
276
(1-3)
, pp.
221
229
.10.1016/S0022-3115(99)00181-6
5.
Singh
,
B. N.
, and
Evans
,
J. H.
,
1995
, “
Significant Differences in Defect Accumulation Behaviour Between fcc and bcc Crystals Under Cascade Damage Conditions
,”
J. Nucl. Mater.
,
226
(3)
, pp.
277
285
.10.1016/0022-3115(95)00121-2
6.
Dai
,
Y.
, and
Victoria
,
M.
,
1997
, “
Defect Structures in Deformed f.c.c. Metals
,”
Acta Mater.
45
(
8
), p.
3495
3501
.10.1016/S1359-6454(97)00019-0
7.
Matsukawa
,
Y.
,
Osetsky
,
Y. N.
,
Stoller
,
R. E.
, and
Zinkle
,
S. J.
,
2008
, “
Mechanisms of Stacking Fault Tetrahedra Destruction by Gliding Dislocations in Quenched Gold
,”
Philos. Mag.
,
88
(
4
), p.
581
597
.10.1080/14786430801898644
8.
Jenkins
,
M. L.
,
1974
, “
Weak-Beam Electron-Microscopy Analysis of Defect Clusters in Heavy-Ion Irradiated Silver and Copper
,”
Philos. Mag.
,
29
(4)
, p.
813
828
.10.1080/14786437408222073
9.
Zinkle
,
S. J.
, and
Snead
,
L. L.
,
1995
, “
Microstructure of Copper and Nickel Irradiated With Fission Neutrons Near 230 °C
,”
J. Nucl. Mater.
,
225
, pp.
123
131
.10.1016/0022-3115(94)00670-9
10.
Singh
,
B. N.
,
Horsewell
,
A.
,
Toft
,
P.
, and
Edwards
,
D. J.
,
1995
, “
Temperature and Dose Dependencies of Microstructure and Hardness of Neutron Irradiated OFHC Copper
,”
J. Nucl. Mater.
,
224
(
2
), p.
131
140
.10.1016/0022-3115(95)00054-2
11.
Shimomura
,
Y.
, and
Nishiguchi
,
R.
,
1997
, “
Vacancy Clustering to Faulted Loop, Stacking Fault Tetrahedron and Void in fcc Metals
,”
Radiat. Eff. Defects Solids
,
141
(
1-4
), pp.
311
324
.10.1080/10420159708211578
12.
Schäublin
,
R.
,
Yao
,
Z.
,
Baluc
,
N.
, and
Victoria
,
M.
,
2005
, “
Irradiation-Induced Stacking Fault Tetrahedra in fcc Metals
,”
Philos. Mag.
,
85
(
4-7
), p.
769
777
.10.1080/14786430412331319929
13.
Zinkle
,
S. J.
, and
Singh
,
B. N.
,
2006
, “
Microstructure of Neutron-Irradiated Iron Before and After Tensile Deformation
,”
J. Nucl. Mater.
,
351
(1-3)
, pp.
269
284
.10.1016/j.jnucmat.2006.02.031
14.
Phythian
,
W. J.
,
Stoller
,
R. E.
,
Foreman
,
A. J. E.
,
Calder
,
A. F.
, and
Bacon
,
D. J.
,
1995
, “
A Comparison of Displacement Cascades in Copper and Iron by Molecular Dynamics and Its Application to Microstructural Evolution
,”
J. Nucl. Mater.
,
223
(3)
, p.
245
261
.10.1016/0022-3115(95)00022-4
15.
Averback
,
R. S.
, and
Diaz de la Rubia
,
T.
,
1998
, “
Displacement Damage in Irradiated Metals and Semiconductors
,”
Solid State Phys.
,
51
, pp.
281
402
.10.1016/S0081-1947(08)60193-9
16.
Stoller
,
R. E.
,
2000
, “
The Role of Cascade Energy and Temperature in Primary Defect Formation in Iron
,”
J. Nucl. Mater.
,
276
(1-3)
, pp.
22
32
.10.1016/S0022-3115(99)00204-4
17.
Porter
,
D. L.
,
Hudman
,
G. D.
, and
Garner
,
F. A.
, “
Irradiation Creep and Swelling of Annealed Type 304L Stainless Steel at 390 °C and High Neutron Fluence
,”
1991
,
J. Nucl. Mater.
,
179-181
(1), pp.
581
584
.10.1016/0022-3115(91)90154-Y
18.
Porter
,
D. L.
, and
Garner
,
F. A.
,
1988
, “
Irradiation Creep and Embrittlement Behavior of AISI 316 Stainless Steel at Very High Neutron Fluences
,"
J. Nucl. Mater.
,
159
, pp.
114
121
.10.1016/0022-3115(88)90089-X
19.
Little
,
E. A.
, and
Stow
,
D. A.
,
1979
, “
Void-Swelling in Irons and Ferritic Steels: II. An Experimental Survey of Materials Irradiated in a Fast Reactor
,”
J. Nucl. Mater.
,
87
(1)
, pp.
25
39
.10.1016/0022-3115(79)90123-5
20.
Garner
,
F. A.
,
Toloczko
,
M. B.
, and
Sencer
,
B. H.
,
2000
, “
Comparison of Swelling and Irradiation Creep Behavior of fcc-Austenitic and bcc-Ferritic/Martensitic Alloys at High Neutron Exposure,
J. Nucl. Mater.
,
276
(1-3)
, pp.
123
142
.10.1016/S0022-3115(99)00225-1
21.
Zinkle
,
S. J.
,
2005
, “
Fusion Materials Science: Overview of Challenges and Recent Progress
,”
Phys. Plasmas
,
12
, p.
058101
.10.1063/1.1880013
22.
Aitken
,
D.
,
Goodhew
,
P. J.
, and
Waldron
,
M. B.
,
1973
, “
Helium Bubble Formation and Migration in Niobium
,”
Nature
,
244
, pp.
15
16
. 10.1038/physci244015a0
23.
Goodhew
,
P. J.
, and
Tyler
,
S. K.
,
1978
, “
Bubbles and Voids With Ringed Images
,”
J. Nucl. Mater.
,
73
(1)
, pp.
111
114
.10.1016/0022-3115(78)90486-5
24.
Johnson
,
P. B.
, and
Mazey
,
D. J.
,
1978
, “
Helium Gas Bubble Lattices in Face-Centered-Cubic Metals
,”
Nature
,
276
, pp.
595
596
.10.1038/276595a0
25.
Johnson
,
P. B.
,
Malcolm
,
A. L.
, and
Mazey
,
D. J.
,
1987
, “
Importance of Stress in Bubble Ordering in the Helium Gas-Bubble Superlattice in Copper
,”
Nature
,
329
, pp.
316
318
.10.1038/329316a0
26.
Johnson
,
P. B.
, and
Mazey
,
D. J.
,
1995
, “
Gas-Bubble Superlattice Formation in bcc Metals
,”
J. Nucl. Mater.
,
218
(3)
, pp.
273
288
.10.1016/0022-3115(94)00674-1
27.
Goodhew
,
P. J.
, and
Tyler
,
S. K.
,
1981
, “
Helium Bubble Behaviour in b.c.c. Metals Below 0.65Tm
,”
Proc. R. Soc. A
,
377
, p.
151
184
.10.1098/rspa.1981.0120
28.
Armstrong
,
T. R.
,
Luklinska
,
Z. H.
,
Tyler
,
S. K.
, and
Goodhew
,
P. J.
,
1982
, “
A Comparison of Helium Bubble Behaviour in an Austenitic and a Ferritic Steel
,”
Fusion Technology 1982: Proceedings of the 12th Symposium on Fusion Technology, Vol. 1, Jülich, Germany, Sept. 13–17
, pp.
743
748
.
29.
Iwakiri
,
H.
,
Yasunaga
,
K.
,
Morishita
,
K.
, and
Yoshida
,
N.
,
2000
, “
Microstructure Evolution in Tungsten During Low-Energy Helium Ion Irradiation
,”
J. Nucl. Mater.
,
283-287
(Pt.2)
, p.
1134
1138
.10.1016/S0022-3115(00)00289-0
30.
Myers
,
S. M.
,
Richards
,
P. M.
,
Wampler
,
W. R.
, and
Besenbacher
,
F.
,
1989
, “
Ion-Beam Studies of Hydrogen-Metal Interactions
,”
J. Nucl. Mater.
,
165
(1)
, pp.
9
64
.10.1016/0022-3115(89)90502-3
31.
Goodhew
,
P. J.
,
Tyler
,
S. K.
, and
Waldron
,
M. B.
,
1981
, “
The Effect of Alloying on Helium Bubble Behaviour in Refractory Metals
,”
J. Nucl. Mater.
,
104
, pp.
1151
1155
.10.1016/0022-3115(82)90756-5
32.
Trinkaus
,
H.
, and
Singh
,
B. N.
,
2003
, “
Helium Accumulation in Metals During Irradiation—Where Do We Stand?
,”
J. Nucl. Mater.
,
323
(2-3)
, pp.
229
242
.10.1016/j.jnucmat.2003.09.001
33.
Gruber
,
E. E.
,
1967
, “
Calculated Size Distributions for Gas Bubble Migration and Coalescence in Solids
,”
J. Appl. Phys.
,
38
(1)
, p.
243
250
.10.1063/1.1708962
34.
Greenwood
,
G. W.
, and
Boltax
,
A.
,
1962
, “
The Role of Fission Gas Re-Solution During Post-Irradiation Heat Treatment
,”
J. Nucl. Mater.
,
5
(2)
, pp.
234
240
.10.1016/0022-3115(62)90104-6
35.
Markworth
,
A. J.
,
1973
, “
On the Coarsening of Gas-Filled Pores in Solids
,”
Metall. Trans.
,
4
(11)
, pp.
2651
2656
.10.1007/BF02644271
36.
Goodhew
,
P. J.
,
1981
, “
The Shape of an Overpressurized Bubble
,”
J. Nucl. Mater.
,
98
(1-2)
, p.
221
222
.10.1016/0022-3115(81)90402-5
37.
Singh
,
B. N.
,
1973
, “
On the Influence of Grain Boundaries on Void Growth,
Philos. Mag.
,
28
(
6
), pp.
1409
1413
.10.1080/14786437308228009
38.
Sun
,
C.
,
Yu
,
K. Y.
,
Lee
,
J. H.
,
Liu
,
Y.
,
Wang
,
H.
,
Shao
,
L.
,
Maloy
,
S. A.
,
Hartwig
,
K. T.
, and
Zhang
,
X.
,
2012
, “
Enhanced Radiation Tolerance of Ultrafine Grained Fe-Cr-Ni Alloy
,”
J. Nucl. Mater.
,
420
(1-3)
, pp.
235
240
.10.1016/j.jnucmat.2011.10.001
39.
Yu
,
K. Y.
,
Liu
,
Y.
,
Sun
,
C.
,
Wang
,
H.
,
Shao
,
L.
,
Fu
,
E. G.
, and
Zhang
,
X.
, “
Radiation Damage in Helium Ion Irradiated Nanocrystalline Fe
,”
J. Nucl. Mater.
,
425
(1-3)
, pp.
140
146
. 10.1016/j.jnucmat.2011.10.052
40.
Nita
,
N.
,
Schaeublin
,
R.
, and
Victoria
,
M.
,
2004
, “
Impact of Irradiation on the Microstructure of Nanocrystalline Materials
,”
J. Nucl. Mater.
,
329-333
(Pt.B)
, pp.
953
957
.10.1016/j.jnucmat.2004.04.058
41.
Chimi
,
Y.
,
Iwase
,
A.
,
Ishikawa
,
N.
,
Kobiyama
,
M.
,
Inami
,
T.
,
Kambara
,
T.
, and
Okuda
,
S.
,
2006
, “
Swift Heavy Ion Irradiation Effects in Nanocrystalline Gold
,”
Nucl. Instrum. Methods Phys. Res. B
,
245
(1)
, pp.
171
175
.10.1016/j.nimb.2005.11.096
42.
Rose
,
M.
,
Balogh
,
A. G.
, and
Hahn
,
H.
,
1997
, “
Instability of Irradiation Induced Defects in Nanostructured Materials
,”
Nucl. Instrum. Methods B
,
127-128
, pp.
119
122
.10.1016/S0168-583X(96)00863-4
43.
Samaras
,
M.
,
Derlet
,
P. M.
,
Van Swygenhoven
,
H.
, and
Victoria
,
M.
,
2002
, “
Computer Simulation of Displacement Cascades in Nanocrystalline Ni
,”
Phys. Rev. Lett.
,
88
, p.
125505
.10.1103/PhysRevLett.88.125505
44.
Shen
,
T. D.
,
Feng
,
S.
,
Tang
,
M.
,
Valdez
,
J. A.
,
Wang
,
Y.
, and
Sickafus
,
K. E.
,
2007
, “
Enhanced Radiation Tolerance in Nanocrystalline MgGa2O4
,”
Appl. Phys. Lett.
,
90
(26)
, p.
263115
.10.1063/1.2753098
45.
Kilmametov
,
A. R.
,
Gunderov
,
D. V.
,
Valiev
,
R. Z.
,
Balogh
,
A. G.
, and
Hahn
,
H.
,
2008
, “
Enhanced Ion Irradiation Resistance of Bulk Nanocrystalline TiNi Alloy
,”
Scr. Mater.
,
59
(10)
, p.
1027
1030
.10.1016/j.scriptamat.2008.06.051
46.
Wang
,
H.
,
Araujo
,
R.
,
Swadener
,
J. G.
,
Wang
,
Y. Q.
,
Zhang
,
X.
,
Fu
,
E. G.
, and
Cagin
,
T.
,
2007
, “
Ion Irradiation Effects in Nanocrystalline TiN Coatings
,”
Nucl. Instrum. Methods B
,
261
(1-2)
, pp.
1162
-
1166
. 10.1016/j.nimb.2007.04.248
47.
Li
,
N.
,
Fu
,
E. G.
,
Wang
,
H.
,
Carter
,
J. J.
,
Shao
,
L.
,
Maloy
,
S. A.
,
Misra
,
A.
, and
Zhang
,
X.
,
2009
, “
He Ion Irradiation Damage in Fe/W Nanolayer Films
,”
J. Nucl. Mater.
,
389
(2)
, pp.
233
238
.10.1016/j.jnucmat.2009.02.007
48.
Fu
,
E. G.
,
Misra
,
A.
,
Wang
,
H.
,
Shao
,
L.
, and
Zhang
,
X.
,
2010
, “
Interface Enabled Defects Reduction in Helium Ion Irradiated Cu/V Nanolayers
,”
J. Nucl. Mater.
,
407
(3)
, pp.
178
188
.10.1016/j.jnucmat.2010.10.011
49.
Li
,
N.
,
Martin
,
M. S.
,
Anderoglu
,
O.
,
Misra
,
A.
,
Shao
,
L.
,
Wang
,
H.
, and
Zhang
,
X.
,
2009
, “
He Ion Irradiation Damage in Al/Nb Multilayers
,”
J. Appl. Phys.
,
105
(12)
, p.
123522
.10.1063/1.3138804
50.
Zhang
,
X.
,
Li
,
N.
,
Anderoglu
,
O.
,
Wang
,
H.
,
Swadener
,
J. G.
,
Höchbauer
,
T.
,
Misra
,
A.
, and
Hoagland
,
R. G.
,
2007
, “
Nanostructured Cu/Nb Multilayers Subjected to Helium Ion Irradiation
,”
Nuclear Instrum. Method Phys. Res. B
,
261
(1-2)
, pp.
1129
1132
.10.1016/j.nimb.2007.03.098
51.
Li
,
N.
,
Carter
,
J. J.
,
Misra
,
A.
,
Shao
,
L.
,
Wang
,
H.
, and
Zhang
,
X.
,
2011
, “
The Influence of Interfaces on the Formation of Bubbles in He-Ion-Irradiated Cu/Mo Nanolayers
,”
Philos. Mag. Lett.
,
91
(1)
, pp.
18
28
.10.1080/09500839.2010.522210
52.
Misra
,
A.
,
Demkowicz
,
M. J.
,
Zhang
,
X.
, and
Hoagland
,
R. G.
,
2007
, “
The Radiation Damage Tolerance of Ultra-High Strength Nanolayered Composites
,”
JOM
,
59
(9)
, pp.
62
65
. 10.1007/s11837-007-0120-6
53.
Zhang
,
X.
,
Fu
,
E. G.
,
Misra
,
A.
, and
Demkowicz
,
M. J.
,
2010
, “
Interface-Enabled Defect Reduction in He Ion Irradiated Metallic Multilayers
,”
JOM
,
62
(
12
), pp.
75
78
.10.1007/s11837-010-0185-5
54.
Demkowicz
,
M. J.
,
Hoagland
,
R. G.
, and
Hirth
,
J. P.
,
2008
, “
Interface Structure and Radiation Damage Resistance in Cu-Nb Multilayer Nanocomposites
,”
Phys. Rev. Lett.
,
100
(13)
, p.
136102
.10.1103/PhysRevLett.100.136102
55.
Milosavljević
,
M.
,
Peruško
,
D.
,
Milinović
,
V.
,
Stojanović
,
Z.
,
Zalar
,
A.
,
Kovač
,
J.
, and
Jeynes
,
C.
,
2010
, “
Ion Irradiation Stability of Multilayered AIN/TiN Nanocomposites
,”
J. Phys. D: Appl. Phys.
,
43
, p.
065302
.10.1088/0022-3727/43/6/065302
56.
Peruško
,
D.
,
Webb
,
M. J.
,
Milinović
,
V.
,
Timotijević
,
B.
,
Milosavljević
,
M.
,
Jeynes
,
C.
, and
Webb
,
R. P.
,
2008
, “
On the Ion Irradiation Stability of AI/Ti versus AIN/TiN Multilayers,
Nucl. Instrum. Methods Phys. Res. B
,
266
(8)
, pp.
1749
1753
.10.1016/j.nimb.2008.02.034
57.
Bai
,
X.-M.
,
Voter
,
A. F.
,
Hoagland
,
R. G.
,
Nastasi
,
M.
, and
Uberuaga
,
B. P.
,
2010
, “
Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission
,”
Science
,
327
, pp.
1631
1634
.10.1126/science.1183723
58.
Wang
,
J.
,
Hoagland
,
R. G.
, and
Misra
,
A.
,
2009
, “
Room-Temperature Dislocation Climb in Metallic Interfaces
,”
Appl. Phys. Lett.
,
94
(13)
, p.
131910
.10.1063/1.3111137
59.
Li
,
N.
,
Wang
,
J.
,
Huang
,
J. Y.
,
Misra
,
A.
, and
Zhang
,
X.
,
2010
, “
In Situ TEM Observations of Room Temperature Dislocation Climb at Interfaces in Nanolayered AI/Nb Composites
,”
Scr. Mater.
,
63
(4)
, pp.
363
366
.10.1016/j.scriptamat.2010.04.005
60.
Wei
,
Q. M.
,
Wang
,
Y. Q.
,
Nastasi
,
M.
, and
Misra
,
A.
,
2011
, “
Nucleation and Growth of Bubbles in He Ion-Implanted V/Ag Multilayers
,”
Philos. Mag.
,
91
(4)
, pp.
553
573
.10.1080/14786435.2010.526647
61.
Demkowicz
,
M. J.
,
Bellon
,
P.
, and
Wirth
,
B. D.
,
2010
, “
Atomic-Scale Design of Radiation-Tolerant Nanocomposites
,”
MRS Bull.
,
35
, pp.
992
998
.10.1557/mrs2010.704
62.
Zinkle
,
S. J.
, and
Farrell
,
K.
,
1989
, “
Void Swelling and Defect Cluster Formation in Reactor-Irradiated Copper
,”
J. Nucl. Mater.
,
168
(3)
, pp.
262
267
.10.1016/0022-3115(89)90591-6
63.
Adamson
,
R. B.
,
Bell
,
W. L.
, and
Kelly
,
P. C.
,
1980
, “
Neutron Irradiation Effects on Copper at 327 °C
,”
J. Nucl. Mater.
,
92
(1)
, pp.
149
154
.10.1016/0022-3115(80)90153-1
64.
Singh
,
B. N.
,
Leffers
,
T.
, and
Horsewell
,
A.
,
1986
, “
Dislocation and Void Segregation in Copper During Neutron-Irradiation
,”
Philos. Mag. A
,
53
(2)
, p.
233
242
. 10.1080/01418618608242823
65.
Hattar
,
K.
,
Demkowicz
,
M. J.
,
Misra
,
A.
,
Robertson
,
I. M.
, and
Hoagland
,
R. G.
,
2008
, “
Arrest of He Bubble Growth in Cu-Nb Multilayer Nanocomposites,
Scr. Mater.
,
58
(7)
, pp.
541
544
.10.1016/j.scriptamat.2007.11.007
66.
Höchbauer
,
T.
,
Misra
,
A.
,
Hattar
,
K.
, and
Hoagland
,
R. G.
,
2005
, “
Influence of Interfaces on the Storage of Ion-Implnated He in Multilayered Metallic Composites
,”
J. Appl. Phys.
,
98
(12)
, p.
123516
.10.1063/1.2149168
67.
Friedel
,
J.
,
1964
,
Dislocations
,
Pergamon
,
New York
.
68.
Kroupa
,
F.
, and
Hirsch
,
P. B.
,
1964
, “
Elastic Interaction Between Prismatic Dislocation Loops and Straight Dislocations
,”
Disc. Faraday Soc.
,
38
, pp.
49
55
.10.1039/df9643800049
69.
Zinkle
,
S. J.
, and
Matsukawa
,
Y.
,
2004
, “
Observation and Analysis of Defect Cluster Production and Interactions With Dislocations
,”
J. Nucl. Mater.
,
329-333
(Pt.A)
, pp.
88
96
.10.1016/j.jnucmat.2004.04.298
70.
Wei
,
Q. M.
,
Li
,
N.
,
Mara
,
N.
,
Nastasi
,
M.
, and
Misra
,
A.
,
2011
, “
Suppression of Irradiation Hardening in Nanoscale V/Ag Multilayers
,”
Acta Mater.
59
(16)
, pp.
6331
6340
.10.1016/j.actamat.2011.06.043
71.
Grimes
,
R. W.
,
Konings
,
R. J. M.
, and
Edwards
,
L.
,
2008
, “
Greater Tolerance for Nuclear Materials
,”
Nat. Mater.
,
7
, pp.
683
685
.10.1038/nmat2266
You do not currently have access to this content.