The change of potency to nucleate cracks in high cycle fatigue (HCF) at a primary nonmetallic inclusion in a martensitic gear steel due to the existence of a neighboring inclusion is computationally investigated using two-and three-dimensional elastoplastic finite element (FE) analyses. Fatigue indicator parameters (FIPs) are computed in the proximity of the inclusion and used to compare crack nucleation potency of various scenarios. The nonlocal average value of the maximum plastic shear strain amplitude is used in computing the FIP. Idealized spherical (cylindrical in 2D) inclusions with homogeneous linear elastic isotropic material properties are considered to be partially debonded, the worst case scenario for HCF crack nucleation as experimentally observed for similar systems (Furuya et al., 2004, “Inclusion-Controlled Fatigue Properties of 1800 Mpa-Class Spring Steels,” Metall. Mater. Trans. A, 35A(12), pp. 3737–3744; Harkegard, 1974, “Experimental Study of the Influence of Inclusions on the Fatigue Properties of Steel,” Eng. Fract. Mech., 6(4), pp. 795–805; Lankford and Kusenberger, 1973, “Initiation of Fatigue Cracks in 4340 Steel,” Metall. Mater. Trans. A, 4(2), pp. 553–559; Laz and Hillberry, 1998, “Fatigue Life Prediction From Inclusion Initiated Cracks,” Int. J. Fatigue, 20(4), pp. 263–270). Inclusion-matrix interfaces are simulated using a frictionless contact penalty algorithm. The fully martensitic steel matrix is modeled as elastic-plastic with pure nonlinear kinematic hardening expressed in a hardening minus dynamic recovery format. FE simulations suggest significant intensification of plastic shear deformation and hence higher FIPs when the inclusion pair is aligned perpendicular to the uniaxial stress direction. Relative to the reference case with no neighboring inclusion, FIPs decrease considerably when the inclusion pair aligns with the applied loading direction. These findings shed light on the anisotropic HCF response of alloys with primary inclusions arranged in clusters by virtue of the fracture of a larger inclusion during deformation processing. Materials design methodologies may also benefit from such cost-efficient parametric studies that explore the relative influence of microstructure attributes on the HCF properties and suggest strategies for improving HCF resistance of alloys.

References

1.
Prasannavenkatesan
,
R.
,
Zhang
,
J.
,
McDowell
,
D. L.
,
Olson
,
G. B.
, and
Jou
,
H.-J.
,
2009
, “
3D Modeling of Subsurface Fatigue Crack Nucleation Potency of Primary Inclusions in Heat Treated and Shot Peened Martensitic Gear Steels
,”
Int. J. Fatigue
,
31
(
7
), pp.
1176
1189
.10.1016/j.ijfatigue.2008.12.001
2.
Mughrabi
,
H.
,
2002
, “
Fatigue Crack Initiation Mechanisms and Fatigue Life in High-Cycle and in Ultrahigh-Cycle Fatigue
,”
Fatigue; David L. Davidson Symposium
, Seattle, WA, February 17–21, pp.
3
15
.
3.
Mughrabi
,
H.
,
2006
, “
Specific Features and Mechanisms of Fatigue in the Ultrahigh-Cycle Regime
,”
Int. J. Fatigue
,
28
(
11
), pp.
1501
1508
.10.1016/j.ijfatigue.2005.05.018
4.
Wang
,
Q. Y.
,
Bathias
,
C.
,
Kawagoishi
,
N.
, and
Chen
,
Q.
,
2002
, “
Effect of Inclusion on Subsurface Crack Initiation and Gigacycle Fatigue Strength
,”
Int. J. Fatigue
,
24
(
12
), pp.
1269
1274
.10.1016/S0142-1123(02)00037-3
5.
Furuya
,
Y.
,
Matsuoka
,
S.
, and
Abe
,
T.
,
2004
, “
Inclusion-Controlled Fatigue Properties of 1800 MPA-Class Spring Steels
,”
Metall. Mater. Trans. A
,
35A
(
12
), pp.
3737
3744
.10.1007/s11661-004-0279-1
6.
Harkegard
,
G.
,
1974
, “
Experimental Study of the Influence of Inclusions on the Fatigue Properties of Steel
,”
Eng. Fract. Mech.
,
6
(
4
), pp.
795
805
.10.1016/0013-7944(74)90073-3
7.
Tiemens
,
B. L.
,
2006
, “
Performance Optimization and Computational Design of Ultra-High Strength Gear Steels
,” Ph.D. thesis, Department of Materials Science and Engineering, Northwestern University, Evanston, IL.
8.
Laz
,
P. J.
, and
Hillberry
,
B. M.
,
1998
, “
Fatigue Life Prediction From Inclusion Initiated Cracks
,”
Int. J. Fatigue
,
20
(
4
), pp.
263
270
.10.1016/S0142-1123(97)00136-9
9.
Lankford
,
J.
, and
Kusenberger
,
F. N.
,
1973
, “
Initiation of Fatigue Cracks in 4340 Steel
,”
Metall. Mater. Trans. A
,
4
(
2
), pp.
553
559
.10.1007/BF02648709
10.
Kunio
,
T.
,
Shimizu
,
M.
,
Yamada
,
K.
,
Sakura
,
K.
, and
Yamamoto
,
T.
,
1981
, “
The Early Stage of Fatigue Crack Growth in Martensitic Steel
,”
Int. J. Fract.
,
17
(
2
), pp.
111
119
.10.1007/BF00053515
11.
Melander
,
A.
,
1997
, “
A Finite Element Study of Short Cracks With Different Inclusion Types Under Rolling Contact Fatigue Load
,”
Int. J. Fatigue
,
19
(
1
), pp.
13
24
.10.1016/S0142-1123(96)00045-X
12.
Lankford
,
J.
,
1976
, “
Inclusion-Matrix Debonding and Fatigue Crack Initiation in Low Alloy Steel
,”
Int. J. Fract.
,
12
(
1
), pp.
155
156
.10.1007/BF00036019
13.
Lankford
,
J.
,
1977
, “
Initiation and Early Growth of Fatigue Cracks in High Strength Steel
,”
Eng. Fract. Mech.
,
9
(
3
), pp.
617
624
.10.1016/0013-7944(77)90074-1
14.
Kanazawa
,
K.
, and
Nishijima
,
S.
,
1997
, “
Fatigue Fracture of Low Alloy Steel at Ultra-High-Cycle Region Under Elevated Temperature Condition
,”
Zairyo/J. Soc. Mater. Sci.
, Jpn.,
46
(
12
), pp.
1396
1401
.10.2472/jsms.46.1396
15.
Kato
,
Y.
,
Sato
,
K.
,
Hiraoka
,
K.
, and
Nuri
,
Y.
,
2001
, “
Recent Evaluation Procedures of Nonmetallic Inclusions in Bearing Steels. Statistics of Extreme Value Method and Development of Higher Frequency Ultrasonic Testing Method
,”
Sanyo Tech. Report
,
8
(
1
), pp.
59
67
.10.1520/STP1419-EB
16.
Mughrabi
,
H
.,
2002
, “
On `Multi-Stage' Fatigue Life Diagrams and the Relevant Life-Controlling Mechanisms in Ultrahigh-Cycle Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
25
(
8–9
), pp.
755
764
.10.1046/j.1460-2695.2002.00550.x
17.
Nishijima
,
S.
, and
Kanazawa
,
K.
,
1999
, “
Stepwise S-N Curve and Fish-Eye Failure in Gigacycle Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
22
(
7
), pp.
601
607
.10.1046/j.1460-2695.1999.00206.x
18.
Murakami
,
R.
,
Yonekura
,
D.
, and
Ni
,
Z.
,
2002
, “
Fatigue Fracture Behavior of High-Strength Steel in Super Long Life Range
,”
JSME Int. J., Ser. A
,
45
(
4
), pp.
517
522
.10.1299/jsmea.45.517
19.
Castillo
,
E.
,
1988
,
Extreme Value Theory in Engineering
,
Academic
,
New York
.
20.
Anderson
,
C. W.
,
De Mare
,
J.
, and
Rootzen
,
H.
,
2005
, “
Methods for Estimating the Sizes of Large Inclusions in Clean Steels
,”
Acta Mater.
,
53
(
8
), pp.
2295
2304
.10.1016/j.actamat.2005.01.035
21.
Tiryakioglu
,
M.
,
2008
, “
Statistical Distributions for the Size of Fatigue-Initiating Defects in Al-7%Si-0.3%Mg Alloy Castings: A Comparative Study
,”
Mater. Sci. Eng. A
,
497
(
1–2
), pp.
119
125
.10.1016/j.msea.2008.06.023
22.
Bathias
,
C.
,
2006
, “
Piezoelectric Fatigue Testing Machines and Devices
,”
Int. J. Fatigue
,
28
(
11
), pp.
1438
1445
.10.1016/j.ijfatigue.2005.09.020
23.
Shyam
,
A.
,
Torbet
,
C. J.
,
Jha
,
S. K.
,
Larsen
,
J. M.
,
Caton
,
M. J.
,
Szczepanski
,
C. J.
,
Pollock
,
T. M.
, and
Jones
,
J. W.
,
2004
, “
Development of Ultrasonic Fatigue for Rapid, High Temperature Fatigue Studies in Turbine Engine Materials
,” 10th International Symposium on Superalloys, Champion, PA, September 19–23, pp.
259
268
.
24.
McDowell
,
D. L.
,
2005
, “Microstructure-Sensitive Computational Fatigue Analysis,”
Handbook of Materials Modeling Part A: Methods
, S. Yip, and M. F. Horstemeyer, eds.,
Springer
,
Amsterdam, Netherlands
, pp.
1193
1214
.10.1007/978-1-4020-3286-8_61
25.
McDowell
,
D. L.
,
2007
, “
Simulation-Based Strategies for Microstructure-Sensitive Fatigue Modeling
,”
Mater. Sci. Eng. A
,
468–470
, pp.
4
14
.10.1016/j.msea.2006.08.129
26.
McDowell
,
D. L.
,
Gall
,
K.
,
Horstemeyer
,
M. F.
, and
Fan
,
J.
,
2003
, “
Microstructure-Based Fatigue Modeling of Cast A356-T6 Alloy
,”
Eng. Fract. Mech.
,
70
(
1
), pp.
49
80
.10.1016/S0013-7944(02)00021-8
27.
McDowell
,
D. L.
, and
Olson
,
G. B.
,
2008
, “
Concurrent Design of Hierarchical Materials and Structures
,”
Sci. Model. Simul.
,
15
(
1
), pp.
207
240
.10.1007/s10820-008-9100-6
28.
Kuhlmann-Wilsdorf
,
D.
, and
Thomason
,
P. F.
,
1982
, “
The Role of Vacant Lattice Sites in the Low-Amplitude Fatigue Failure at Inclusions in Steel
,”
Acta Metall.
,
30
(
6
), pp.
1243
1245
.10.1016/0001-6160(82)90020-7
29.
Murakami
,
Y.
,
Kodama
,
S.
, and
Konuma
,
S.
,
1989
, “
Quantitative Evaluation of Effects of Non-Metallic Inclusions on Fatigue Strength of High Strength Steels. I: Basic Fatigue Mechanism and Evaluation of Correlation Between the Fatigue Fracture Stress and the Size and Location of Non-Metallic Inclusions
,”
Int. J. Fatigue
,
11
(
5
), pp.
291
298
.10.1016/0142-1123(89)90054-6
30.
Shiozawa
,
K.
,
Morii
,
Y.
,
Nishino
,
S.
, and
Lu
,
L.
,
2006
, “
Subsurface Crack Initiation and Propagation Mechanism in High-Strength Steel in a Very High Cycle Fatigue Regime
,”
Int. J. Fatigue
,
28
(
11
), pp.
1521
1532
.10.1016/j.ijfatigue.2005.08.015
31.
Cao
,
W.
, and
Lam
,
K. Y.
,
1994
, “
Effect of Multi-Flat Inclusions on Stress Intensity Factor of a Semi-Infinite Crack
,”
Eng. Fract. Mech.
,
47
(
2
), pp.
157
168
.10.1016/0013-7944(94)90217-8
32.
Cheeseman
,
B. A.
, and
Santare
,
M. H.
,
2000
, “
The Interaction of a Curved Crack With a Circular Elastic Inclusion
,”
Int. J. Fract.
,
103
(
3
), pp.
259
277
.10.1023/A:1007663913279
33.
Lam
,
K. Y.
, and
Wen
,
C.
,
1993
, “
Enhancement/Shielding Effects of Inclusion on Arbitrarily Located Cracks
,”
Eng. Fract. Mech.
,
46
(
3
), pp.
443
454
.10.1016/0013-7944(93)90236-L
34.
Wen
,
C.
, and
Lam
,
K. Y.
,
1993
, “
Effect of a Flat Inclusion on Stress Intensity Factor of a Semi-Infinite Crack
,”
Theor. Appl. Fract. Mech.
,
19
(
3
), pp.
183
193
.10.1016/0167-8442(93)90020-C
35.
ABAQUS 6.7,
2006
, Simulia, Providence, RI.
36.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1990
,
Mechanics of Solid Materials
,
Cambridge University
, Cambridge, UK.
37.
Prasannavenkatesan
,
R.
,
McDowell
,
D. L.
,
Olson
,
G. B.
, and
Jou
,
H.-J.
,
2009
, “
Modeling Effects of Compliant Coatings on HCF Resistance of Primary Inclusions in High Strength Steels
,”
ASME J. Eng. Mater. Technol.
,
131
(
1
), pp.
121
126
.10.1115/1.3030943
38.
Wang
,
Q. Y.
,
Bathias
,
C.
,
Kawagoishi
,
N.
, and
Chen
,
Q.
,
2001
, “
Characterization of S-N Curve in Gigacycle Fatigue
,”
Proc. SPIE 4537
, pp.
213
216
.10.1117/12.468825
39.
Fatemi
,
A.
, and
Kurath
,
P.
,
1988
, “
Multiaxial Fatigue Life Predictions Under the Influence of Mean-Stresses
,”
ASME J. Eng. Mater. Technol.
,
110
(
4
), pp.
380
388
.10.1115/1.3226066
40.
Fatemi
,
A.
, and
Socie
,
D. F.
,
1988
, “
Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
11
(
3
), pp.
149
165
.10.1111/j.1460-2695.1988.tb01169.x
41.
Findley
,
W. N.
,
1953
, “
Combined-Stress Fatigue Strength of 76s-T61 Aluminum Alloy With Superimposed Mean Stresses and Corrections for Yielding
,” National Advisory Committee for Aeronautics, Washington, DC, technical report.
42.
Findley
,
W. N.
,
1957
, “
Fatigue of Metals Under Combinations of Stresses
,”
Trans. ASME
,
79
(
6
), pp.
1337
1347
.
43.
Hollomon
,
J. H.
, and
Zener
,
C.
,
1946
, “
Problems in Fracture of Metals
,”
J. Appl. Phys.
,
17
(
2
), pp.
82
90
.10.1063/1.1707697
44.
Stroh
,
A. N.
,
1957
, “
A Theory of the Fracture of Metals
,”
Adv. Phys.
,
6
(24), pp.
418
465
.10.1080/00018735700101406
45.
Fan
,
J.
,
McDowell
,
D. L.
,
Horstemeyer
,
M. F.
, and
Gall
,
K.
,
2003
, “
Cyclic Plasticity at Pores and Inclusions in Cast Al-Si Alloys
,”
Eng. Fract. Mech.
,
70
(
10
), pp.
1281
1302
.10.1016/S0013-7944(02)00097-8
46.
Gall
,
K.
,
Horstemeyer
,
M.
,
McDowell
,
D. L.
, and
Fan
,
J.
,
2000
, “
Finite Element Analysis of the Stress Distributions Near Damaged Si Particle Clusters in Cast Al-Si Alloys
,”
Mech. Mater.
,
32
(
5
), pp.
277
301
.10.1016/S0167-6636(00)00003-X
47.
Socie
,
D.
, and
Bannantine
,
J.
,
1988
, “
Bulk Deformation Fatigue Damage Models
,”
Mater. Sci. Eng.
,
103
(
1
), pp.
3
13
.10.1016/0025-5416(88)90546-0
48.
Coffin
,
L. F.
, Jr.
,
1974
, “
Fatigue at High Temperature—Prediction and Interpretation
,”
Proc. Inst. Mech. Eng.
,
188
(
9
), pp.
109
127
.10.1243/PIME_PROC_1974_188_014_02
49.
Coffin
,
L. F.
, Jr.
,
1977
, “
Multi-Stage Nature of Fatigue: A Review
,”
Met. Sci.
,
11
(
2
), pp.
68
72
.10.1179/msc.1977.11.2.68
50.
“Specialty Alloys Operations,”
2010
, Carpenter Technology Corp., Wyomissing, PA, accessed October 6,
2010
, http://www.latrobesteel.com/assets/documents/datasheets/Ferrium_C61.pdf
51.
Salajegheh
,
N.
,
2011
, “
Microstructure-Sensitive Weighted Probability Approach for Modeling Surface to Bulk Transition of High Cycle Fatigue Failures Dominated by Primary Inclusions
,” Ph.D. thesis, Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
You do not currently have access to this content.