Abstract

In this paper, P92 steel was subjected to thermal aging treatment at 650 °C for 800 h, and then basic mechanical and creep–fatigue test was performed. The creep–fatigue cycle response trend is consistent before and after aging. Subsequently, microscopic observation shows that P92 steel after aging still has typical lamellar martensite and prior austenite grains. The thermal aging of 650 °C resulted in more precipitates of martensite lath, obvious lath boundary, coarsening of martensite lath, and decreased dislocation density. Furthermore, thermal aging results in the increase of precipitates (Laves phase) and martensite width of P92 steel. The fine Laves phase located on the grain boundary can effectively nail the grain boundary and play the role of precipitation strengthening. Besides, the Laves phase located on the dislocation has the effect of diffusion strengthening, which prevents dislocation slip and improves the creep–fatigue resistance of P92 steel. Finally, four creep–fatigue life model parameters of aging P92 steel were obtained according to the test, including strain range partitioning (SRP), strain energy partitioning (SEP), frequency separation life model (FSL), and strain energy density exhaustion model (SEDE). The prediction results of the four models fall within the double tolerance zone. The SRP and SEP are found to be conservative, while the FSL and SEDE are recommended herein due to their suitability of predicting creep–fatigue life of aging P92 steel.

References

1.
Hald
,
J.
,
2017
, “
High-Alloyed Martensitic Steel Grades for Boilers in Ultra-Supercritical Power Plants
,”
Materials for Ultra-supercritical Power Plants
,
A. D.
Gianfrancesco
, ed., Vol.
3
,
Woodhead Publishing
,
Cambridge, UK
, pp.
77
97
.
2.
Abe
,
F.
,
2017
, “
New Martensitic Steels
,”
Materials for Ultra-supercritical and Advanced Ultra-supercritical Power Plants
,
A. D.
Gianfrancesco
, ed.,
Woodhead Publishing
, Cambridge, pp.
323
374
.
3.
Zhang
,
X. C.
,
Gong
,
J. G.
, and
Xuan
,
F. Z.
,
2021
, “
A Deep Learning Based Life Prediction Method for Components Under Creep, Fatigue and Creep–Fatigue Conditions
,”
Int. J. Fatigue
,
148
, p.
106236
.
4.
Rockenhäuser
,
C.
,
Schriever
,
S.
,
Hartrott
,
P. V.
,
Piesker
,
B.
, and
Skrotzki
,
B.
,
2018
, “
Comparison of Long-Term Radii Evolution of the S-Phase in Aluminum 2618A During Aging and Creep
,”
Mater. Sci. Eng. A
,
716
(
14
), pp.
78
86
.
5.
Warner
,
H.
,
2018
, “
High-Temperature Fatigue Behaviour of Austenitic Stainless Steel
,”
Influence of Aging on Thermomechanical Fatigue and Creep–Fatigue Interaction
,
H.
Wärner
, ed.,
Springer
,
Amsterdam, The Netherlands
.
6.
Wang
,
X.
,
Zhang
,
W.
,
Gong
,
J.
, and
Jiang
,
Y.
,
2018
, “
Experimental and Numerical Characterization of Low Cycle Fatigue and Creep–Fatigue Behaviour of P92 Steel Welded Joint
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
3
), pp.
611
624
.
7.
Zhang
,
T.
,
Wang
,
X.
,
Ji
,
Y.
,
Zhang
,
W.
,
Hassan
,
T.
, and
Gong
,
J.
,
2020
, “
P92 Steel Creep–Fatigue Interaction Responses Under Hybrid Stress–Strain Controlled Loading and a Life Prediction Model
,”
Int. J. Fatigue
,
140
, p.
105837
.
8.
Mao
,
J. F.
,
Yang
,
J. D.
,
Zhu
,
J.
,
Ding
,
Z. Y.
,
Zhong
,
F. P.
, and
Wang
,
D. S.
,
2022
, “
Experimental and Theoretical Research on Creep-Fatigue Behaviors of 316L Steel With and Without 650 °C Thermal Aging
,”
Fatigue Fract. Eng. Mater. Struct.
,
1
, pp.
1
10
. http://dx.doi.org/0.1111/ffe.13657
9.
Fournier
,
B.
,
Salvi
,
M.
,
Dalle
,
F.
,
Carlan
,
Y. D.
,
Caus
,
C.
,
Sauzay
,
M.
, and
Pineau
,
A.
,
2010
, “
Lifetime Prediction of 9–12%Cr Martensitic Steels Subjected to Creep–Fatigue at High Temperature
,”
Int. J. Fatigue
,
32
(
6
), pp.
971
978
.
10.
Fan
,
Y. N.
,
Shi
,
H. J.
, and
Tokuda
,
K.
,
2015
, “
A Generalized Hysteresis Energy Method for Fatigue and Creep–Fatigue Life Prediction of 316L(N)
,”
Mater. Sci. Eng. A
,
625
, pp.
205
212
.
11.
Sakane
,
M.
,
Shiratsuchi
,
T.
, and
Tsukada
,
Y.
,
2021
, “
Grain Boundary Sliding Model for Assessing Creep–Fatigue Life of Sn37Pb Eutectic Solder
,”
Int. J. Fatigue
,
146
, p.
106132
.
12.
Mao
,
J. F.
,
Li
,
X. Y.
,
Bao
,
S. Y.
,
Ge
,
R. Y.
, and
Yan
,
L.
,
2019
, “
The Experimental and Numerical Studies on Multiaxial Creep Behavior of Inconel 783 at 700 °C
,”
Int. J. Pressure Vessels Piping
,
173
, pp.
133
146
.
13.
Riedel
,
H.
,
Maier
,
G.
, and
Oesterlin
,
H.
,
2021
, “
A Lifetime Model for Creep–Fatigue Interaction With Applications to the Creep Resistant Steel P92
,”
Int. J. Fatigue
,
150
, p.
106308
.
14.
Mao
,
J.
,
Li
,
X.
,
Wang
,
D.
,
Zhong
,
F.
, and
Ding
,
Z.
,
2020
, “
Experimental Study on Creep–Fatigue Behaviors of Chinese P92 Steel With Consideration of Several Important Factors
,”
Int. J. Fatigue
,
142
, p.
5900
.
15.
Dai
,
C.
,
Dongmei
,
J. I.
,
Zhenmao
,
W. U.
,
Guo
,
H.
,
Chen
,
J.
, and
Sun
,
Q.
,
2018
, “
Study on the Influence Factors of Creep–Fatigue Life of 9%~12%Cr Steel
,”
J. Shanghai Univ. Electr. Power
,
34
(
5
), pp.
471
475
.
16.
Wang
,
X.
,
Zhang
,
W.
,
Zhang
,
T.
,
Gong
,
J.
, and
Abdel Wahab
,
M.
,
2019
, “
A New Empirical Life Prediction Model for 9–12% Cr Steels Under Low Cycle Fatigue and Creep–Fatigue Interaction Loadings
,”
Metals
,
9
(
2
), pp.
183
186
.
17.
Barat
,
K.
,
Sivaprasad
,
S.
,
Kar
,
S. K.
, and
Tarafder
,
S.
,
2020
, “
A Novel Rate Based Methodology for Creep–Fatigue Life Estimation of Superalloys
,”
Int. J. Pressure Vessels Piping
,
182
, p.
104064
.
18.
Zhang
,
S. L.
, and
Xuan
,
F. Z.
,
2017
, “
Interaction of Cyclic Softening and Stress Relaxation of 9–12% Cr Steel Under Strain-Controlled Fatigue-Creep Condition: Experimental and Modeling
,”
Int. J. Plast.
,
98
, pp.
45
64
.
19.
Ju
,
G. Y.
,
Hu
,
N. Y.
,
Liu
,
Q. Q.
, and
Gong
,
X. T.
,
2014
, “
Quantitative Analysis of Laves Phase of P92 Steel in the High-Temperature Aging
,”
J. Mater. Prot.
,
47
(
S1
), pp.
75
77
.
20.
Li
,
B.
, and
Xu
,
X. W.
,
2014
, “
Microstructure and Mechanical Properties of Aged T/P92 Steel
,”
Heat Treat. Met.
,
39
(
12
), pp.
110
113
. http:/dx.doi.org/10.13251/j.issn.0254-6051.2014.12.029
21.
Han
,
G. H.
,
Shen
,
J. J.
, and
Xie
,
J. X.
,
2019
, “
Effects of High Temperature Aging on Creep-Rupture Property of P92 Heat-Resistant Steel
,”
J. Mech. Eng. Mater.
,
43
(
6
), pp.
28
32
.
22.
Khayatzadeh
,
S.
,
Tanner
,
D. W. J.
,
Truman
,
C. E.
,
Flewitt
,
P. E. J.
, and
Smith
,
D. J.
,
2017
, “
Influence of Thermal Aging on the Creep Behaviour of a P92 Martensitic Steel
,”
Mater. Sci. Eng. A
,
708
, pp.
544
555
.
23.
Sklenicka
,
V.
,
Kucharova
,
K.
,
Svobodova
,
M.
,
Kral
,
P.
,
Kvapilova
,
M.
, and
Dvorak
,
J.
,
2018
, “
The Effect of a Prior Short-Term Aging on Mechanical and Creep Properties of P92 Steel
,”
Mater. Charact.
,
136
, pp.
388
397
.
24.
Gustafson
,
S.
, and
Hättestrand
,
M.
,
2002
, “
Coarsening of Precipitates in an Advanced Creep Resistant 9% Chromium Steel—Quantitative Microscopy and Simulations
,”
Mater. Sci. Eng. A
,
333
(
1–2
), pp.
279
286
.
25.
Zhang
,
H.
,
Zheng
,
X. F.
, and
Fang
,
Y. Q.
,
2016
, “
Comparative Study of High Temperature Tensile Test Standards for Metallic Materials
,”
Chin. J. Nonferrous Met.
,
9
, pp.
73
74
.
26.
Mao
,
J. F.
,
Zhu
,
J.
,
Li
,
X. Y.
,
Wang
,
D. S.
,
Zhong
,
F. P.
, and
Chen
,
J. C.
,
2021
, “
Effect of Strain Amplitude and Temperature on Creep–Fatigue Behaviors of 9–12% Cr Steel
,”
J. Mater. Res. Technol.
,
21
, p.
00521
.
27.
Chang
,
L.
,
Li
,
X.
,
Wen
,
J. B.
,
Zhou
,
B. B.
, and
Zhou
,
C. Y.
,
2020
, “
Thermal–Mechanical Fatigue Behaviour and Life Prediction of P92 Steel, Including Average Temperature and Dwell Effects
,”
J. Mater. Res. Technol.
,
9
(
1
), pp.
819
837
.
28.
Bao
,
S. Y.
,
Xiao
,
Z. Y.
,
Li
,
X. Y.
,
Zhong
,
F. P.
, and
Mao
,
J. F.
,
2021
, “
The Studies on Multiaxial Creep Behavior of Inconel 718 Notched Bar at 700 °C
,”
J. Pressure Vessel Technol.-Trans. ASME
,
143
(
1
), p.
011504
.
29.
Abe
,
F.
,
2008
, “
Precipitate Design for Creep Strengthening of 9% Cr Tempered Martensitic Steel for Ultra-supercritical Power Plants
,”
Sci. Technol. Adv. Mater.
,
9
(
1
), p.
013002
.
30.
Manson
,
S. S.
,
Halford
,
G. R.
, and
Hirschberg
,
M. H.
,
1971
, “
Creep–Fatigue Analysis by Strain-Range Partitioning
,”
NASA Technical Memorandum X-67838
.
31.
He
,
J. R.
,
Duan
,
Z.
, and
Ning
,
Y.
,
1985
, “
Strain Energy Partitioning and Its Application to GH33A Ni-Base Superalloy and 1Cr18Ni9Ti Stainless Steel
,”
Acta Metall. Sin.
,
1
, pp.
54
63
.
32.
Coffin
,
L.
,
1976
,
Concept of Frequency Separation in Life Prediction for Time-Dependent Fatigue
,
General Electric Co.
,
Schenectady, NY
.
33.
Zhu
,
X. M.
,
Wang
,
R. Z.
,
Zhang
,
C. C.
,
Gong
,
J. G.
,
Tu
,
S. T.
, and
Zhang
,
X. C.
,
2017
, “
Creep–Fatigue Life Prediction and Interaction Diagram in Nickel-Based GH4169 Superalloy at 650 °C Based on Cycle-by-Cycle Concept
,”
Int. J. Fatigue
,
97
, pp.
114
123
.
34.
Wang
,
R. Z.
,
Guo
,
S. J.
,
Chen
,
H. F.
,
Wen
,
J. F.
,
Zhang
,
X. C.
, and
Tu
,
S. T.
,
2019
, “
Multi-axial Creep–Fatigue Life Prediction Considering History-Dependent Damage Evolution: A New Numerical Procedure and Experimental Validation
,”
J. Mech. Phys. Solids
,
131
, pp.
313
336
.
35.
Wang
,
R. Z.
,
Chen
,
H.
,
Zhang
,
Y.
,
Zhang
,
X. C.
, and
Tu
,
S. T.
,
2020
, “
Creep–Fatigue Life Prediction in Nickel-Based Superalloy GH4169 Based on Microstructural Damage Quantification With the Help of Electron Backscatter Diffraction
,”
Mater. Des.
,
195
, p.
108939
.
36.
Chang
,
Y. J.
,
Bae
,
J. C.
,
Kang
,
C. S.
,
Cho
,
J. I.
, and
Son
,
H. T.
,
2007
, “
Normalized Creep–Fatigue Life Prediction Model Based on the Energy Dissipation During Hold Time
,”
Mater.Sci. Eng. A
,
460
, pp.
195
203
.
You do not currently have access to this content.