Abstract

Polyvinyl alcohol (PVA) was investigated as a vehicle for incorporating thermally reduced graphene oxides (TRGOs) into metal matrix composites (MMCs). The TRGOs were synthesized using the modified Hummers’ method and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The PVA/TRGOs nanocomposites were synthesized using the solution mixing technique. The dispersion qualification and quantification of TRGOs in PVA were evaluated through tension and nanoindentation tests, as well as elastic modulus mapping by nanoindentation. The results demonstrated a good dispersion of TRGOs in the PVA matrix, resulting in exceptional mechanical properties. The dispersion time and energy variables were carefully controlled, leading to a good dispersion degree verified by the quantification analysis. Furthermore, preliminary studies confirmed the effectiveness of the PVA as an inclusion vehicle for nanoreinforcements in metallic matrices.

References

1.
Sun
,
Y.
,
Zhang
,
C.
,
Liu
,
B.
,
Meng
,
Q.
,
Ma
,
S.
, and
Dai
,
W.
,
2017
, “
Reduced Graphene Oxide Reinforced 7075 Al Matrix Composites: Powder Synthesis and Mechanical Properties
,”
Metals
,
7
(
11
), p.
400
.
2.
Liu
,
J.
,
Khan
,
U.
,
Coleman
,
J.
,
Fernandez
,
B.
,
Rodriguez
,
P.
,
Naher
,
S.
, and
Brabazon
,
D.
,
2016
, “
Graphene Oxide and Graphene Nanosheet Reinforced Aluminium Matrix Composites: Powder Synthesis and Prepared Composite Characteristics
,”
Mater. Des.
,
94
, pp.
87
89
.
3.
Hu
,
Z.
,
Tong
,
G.
,
Lin
,
D.
,
Chen
,
C.
,
Guo
,
H.
,
Xu
,
J.
, and
Zhou
,
L.
,
2016
, “
Graphene-Reinforced Metal Matrix Nanocomposites–A Review
,”
J. Mater. Sci. Technol.
,
32
(
9
), pp.
930
953
.
4.
Surappa
,
M.
,
2003
, “
Aluminium Matrix Composites: Challenges and Opportunities
,”
Sadhana
,
28
(
1–2
), pp.
319
334
.
5.
Rekha
,
M.
,
Kamboj
,
A.
, and
Srivastava
,
C.
,
2018
, “
Electrochemical Behavior of SnNi-Graphene Oxide Composite Coatings
,”
Thin Solid Films
,
653
, pp.
82
92
.
6.
Rane
,
A. V.
,
Kanny
,
K.
,
Abitha
,
V.
, and
Thomas
,
S.
,
2018
, “Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites,”
Synthesis of Inorganic Nanomaterials
,
S. M.
Bhagyaraj
,
O. S.
Oluwafemi
,
N.
Kalarikkal
, and
S.
Thomas
, eds.,
Elsevier
,
New York
, pp.
121
139
.
7.
Hwang
,
J.
,
Yoon
,
T.
,
Jin
,
S. H.
,
Lee
,
J.
,
Kim
,
T. S.
,
Hong
,
S. H.
, and
Jeon
,
S.
,
2013
, “
Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular-Level Mixing Process
,”
Adv. Mater.
,
25
(
46
), pp.
6724
6729
.
8.
Pérez-Bustamante
,
R.
,
Pérez-Bustamante
,
F.
,
Estrada-Guel
,
I.
,
Santillán-Rodríguez
,
C.
,
Matutes-Aquino
,
J.
,
Herrera-Ramírez
,
J.
,
Miki-Yoshida
,
M.
, and
Martínez-Sánchez
,
R.
,
2011
, “
Characterization of Al2024-CNTs Composites Produced by Mechanical Alloying
,”
Powder Technol.
,
212
(
3
), pp.
390
396
.
9.
Stein
,
J.
,
Lenczowski
,
B.
,
Fréty
,
N.
, and
Anglaret
,
E.
,
2012
, “
Mechanical Reinforcement of a High-Performance Aluminium Alloy AA5083 With Homogeneously Dispersed Multi-Walled Carbon Nanotubes
,”
Carbon
,
50
(
6
), pp.
2264
2272
.
10.
Li
,
H.
,
Kang
,
J.
,
He
,
C.
,
Zhao
,
N.
,
Liang
,
C.
, and
Li
,
B.
,
2013
, “
Mechanical Properties and Interfacial Analysis of Aluminum Matrix Composites Reinforced by Carbon Nanotubes With Diverse Structures
,”
Mater. Sci. Eng. A.
,
577
, pp.
120
124
.
11.
Hatti
,
P. S.
,
Murthy
,
K. N.
, and
Somanakatti
,
A. B.
,
2020
, “Microstructure and Hardness Behaviour Study of Carbon Nanotube in Aluminium Nanocomposites,”
Intelligent Manufacturing and Energy Sustainability
,
ANR
Reddy
,
D.
Marla
,
M.
Simic
,
M. N.
Favorskaya
, and
S. C.
Satapathy
, eds.,
Springer
,
Singapore
, pp.
421
428
.
12.
Habibi
,
M.
,
Paramsothy
,
M.
,
Hamouda
,
A.
, and
Gupta
,
M.
,
2011
, “
Using Integrated Hybrid (Al+ CNT) Reinforcement to Simultaneously Enhance Strength and Ductility of Magnesium
,”
Compos. Sci. Technol.
,
71
(
5
), pp.
734
741
.
13.
Jayalakshmi
,
S.
,
Singh
,
R. A.
,
Sankaranarayanan
,
S.
,
Shabadi
,
R.
,
Konovalov
,
S.
,
Chen
,
X.
, and
Gupta
,
M.
,
2018
, “
Structure-Property Correlation in Magnesium Nanocomposites Synthesized by Disintegrated Melt Deposition Technique
,”
Mat. Today Proc.
,
5
(
8
), pp.
16280
16285
.
14.
Paramsothy
,
M.
,
Gupta
,
M.
,
Chan
,
J.
, and
Kwok
,
R.
,
2011
, “
Carbon Nanotube Addition to Simultaneously Enhance Strength and Ductility of Hybrid AZ31/AA5083 Alloy
,”
Mater. Sci. Appl.
,
2
(
01
), p.
20
29
.
15.
Jiang
,
L.
,
Fan
,
G.
,
Li
,
Z.
,
Kai
,
X.
,
Zhang
,
D.
,
Chen
,
Z.
,
Humphries
,
S.
,
Heness
,
G.
, and
Yeung
,
W. Y.
,
2011
, “
An Approach to the Uniform Dispersion of a High Volume Fraction of Carbon Nanotubes in Aluminum Powder
,”
Carbon
,
49
(
6
), pp.
1965
1971
.
16.
Maravi
,
S.
,
Bajpai
,
A. K.
, and
Bajpai
,
J.
,
2018
, “
Poly (Vinyl Alcohol) Supported Thermally Reduced Graphene Oxide (TRGO) Nanosheets Exhibit Enhanced Electrical and Mechanical Behavior
,”
Nano-Struct. Nano-Objects
,
14
, pp.
73
83
.
17.
Simón-Herrero
,
C.
,
Peco
,
N.
,
Romero
,
A.
,
Valverde
,
J. L.
, and
Sánchez-Silva
,
L.
,
2019
, “
PVA/Nanoclay/Graphene Oxide Aerogels With Enhanced Sound Absorption Properties
,”
Appl. Acoust.
,
156
, pp.
40
45
.
18.
Gozutok
,
M.
,
Sadhu
,
V.
, and
Sasmazel
,
H. T.
,
2019
, “
Development of Poly (Vinyl Alcohol)(PVA)/Reduced Graphene Oxide (rGO) Electrospun Mats
,”
J. Nanosci. Nanotechnol.
,
19
(
7
), pp.
4292
4298
.
19.
Sharma
,
B.
,
Shekhar
,
S.
,
Gautam
,
S.
,
Sarkar
,
A.
, and
Jain
,
P.
,
2018
, “
Nanomechanical Analysis of Chemically Reduced Graphene Oxide Reinforced Poly (Vinyl Alcohol) Nanocomposite Thin Films
,”
Polym. Test.
,
70
, pp.
458
466
.
20.
Wu
,
Z.
,
Huang
,
Y.
,
Xiao
,
L.
,
Lin
,
D.
,
Yang
,
Y.
,
Wang
,
H.
,
Yang
,
Y.
,
Wu
,
D.
,
Chen
,
H.
, and
Zhang
,
Q.
,
2019
, “
Physical Properties and Structural Characterization of Starch/Polyvinyl Alcohol/Graphene Oxide Composite Films
,”
Int. J. Biol. Macromol.
,
123
, pp.
569
575
.
21.
Gahlot
,
S.
,
Kulshrestha
,
V.
,
Agarwal
,
G.
, and
Jha
,
P. K.
,
2015
, “
Synthesis and Characterization of PVA/GO Nanocomposite Films
,”
Macromol. Symp.
,
357
(
1
), pp.
173
177
.
22.
Merino
,
C. A.
,
Sillas
,
J. L.
,
Meza
,
J.
, and
Ramirez
,
J. H.
,
2017
, “
Metal Matrix Composites Reinforced With Carbon Nanotubes by an Alternative Technique
,”
J. Alloys Compd.
,
707
, pp.
257
263
.
23.
Tjong
,
S.
, and
Tam
,
K.
,
2006
, “
Mechanical and Thermal Expansion Behavior of Hipped Aluminum–TiB2 Composites
,”
Mater. Chem. Phys.
,
97
(
1
), pp.
91
97
.
24.
Kaye
,
B. H.
,
1997
, “Mixing of Powders,”
Handbook of Powder Science & Technology
,
M. E.
Fayed
, and
L.
Otten
, eds.,
Springer
,
Boston, MA
, pp.
568
585
.
25.
Haslam
,
M. D.
, and
Raeymaekers
,
B.
,
2013
, “
A Composite Index to Quantify Dispersion of Carbon Nanotubes in Polymer-Based Composite Materials
,”
Compos. B. Eng.
,
55
, pp.
16
21
.
26.
Zähle
,
M.
,
Stoyan
,
D.
,
Zähle
,
K.
, and
Mecke
,
W. J.
,
1988
, “
Stochastic Geometry and Its Applications
,”
Biom. J.
,
30
(
6
), p.
345
758
.
27.
Luo
,
Z.
, and
Koo
,
J.
,
2008
, “
Quantitative Study of the Dispersion Degree in Carbon Nanofiber/Polymer and Carbon Nanotube/Polymer Nanocomposites
,”
Mater. Lett.
,
62
(
20
), pp.
3493
3496
.
28.
Antidormi
,
A.
,
Roche
,
S.
, and
Colombo
,
L.
,
2019
, “
Impact of Oxidation Morphology on Reduced Graphene Oxides Upon Thermal Annealing
,”
J. Phys.
,
3
(
1
), p.
015011
.
29.
Alsharef
,
J. M.
,
Taha
,
M. R. T.
, and
Khan
,
T. A.
,
2017
, “
Physical Dispersion of Nanocarbons in Nanocomposites: A Review
,”
J. Teknol.
,
79
(
5
), pp.
69
81
.
30.
Isaza
,
C. A.
,
Ledezma
,
J.
,
Meza
,
J.
, and
Herrera
,
J.
,
2017
, “
Mechanical Properties and Interfacial Phenomena in Aluminum Reinforced With Carbon Nanotubes Manufactured by the Sandwich Technique
,”
J. Compos. Mater.
,
51
(
11
), pp.
1619
1629
.
31.
Duarte
,
M.
,
Benítez
,
A.
,
Gómez
,
K.
,
Zuluaga
,
B.
,
Meza
,
J.
,
Cardona-Maya
,
Y.
,
Rudas
,
J. S.
, and
Isaza
,
C. A.
,
2020
, “
Nanomechanical Characterization of a Metal Matrix Composite Reinforced With Carbon Nanotubes
,”
AIMS Mater. Sci.
,
7
(
1
), pp.
33
45
.
32.
Sánchez
,
C. A.
,
Cardona-Maya
,
Y.
,
Morales
,
A. D.
,
Rudas
,
J. S.
, and
Isaza
,
C. A.
,
2021
, “
Development and Evaluation of Polyvinyl Alcohol Films Reinforced With Carbon Nanotubes and Alumina for Manufacturing Hybrid Metal Matrix Composites by the Sandwich Technique
,”
AIMS Mater. Sci.
,
8
(
2
), pp.
149
165
.
33.
Isaza
,
C. A.
,
Herrera
,
J.
,
Ledezma
,
J.
, and
Meza
,
J.
,
2018
, “
Dispersion and Alignment Quantification of Carbon Nanotubes in a Polyvinyl Alcohol Matrix
,”
J. Compos. Mater.
,
52
(
12
), pp.
1617
1626
.
34.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
35.
Stobinski
,
L.
,
Lesiak
,
B.
,
Malolepszy
,
A.
,
Mazurkiewicz
,
M.
,
Mierzwa
,
B.
,
Zemek
,
J.
,
Jiricek
,
P.
, and
Bieloshapka
,
I.
,
2014
, “
Graphene Oxide and Reduced Graphene Oxide Studied by the XRD, TEM and Electron Spectroscopy Methods
,”
J. Electron Spectrosc. Relat. Phenom.
,
195
, pp.
145
154
.
36.
Ma
,
J.
,
Li
,
Y.
,
Yin
,
X.
,
Xu
,
Y.
,
Yue
,
J.
,
Bao
,
J.
, and
Zhou
,
T.
,
2016
, “
Poly (Vinyl Alcohol)/Graphene Oxide Nanocomposites Prepared by In Situ Polymerization With Enhanced Mechanical Properties and Water Vapor Barrier Properties
,”
RSC Adv.
,
6
(
55
), pp.
49448
49458
.
37.
Vazquez
,
J. M.
,
Yuste
,
V.
,
Sanchez
,
H.
,
Verdejo
,
R.
,
Lopez
,
M. A.
,
Fernández
,
L.
,
Blanco
,
C.
, and
Menéndez
,
R.
,
2009
, “
Customizing Thermally-Reduced Graphene Oxides for Electrically Conductive or Mechanical Reinforced Epoxy Nanocomposites
,”
European Polym. J.
,
93
, pp.
1
7
.
38.
Seyed
,
N.
, and
Asgharzadeh
,
H.
,
2020
, “
Aluminum Matrix Composites Reinforced With Graphene: A Review on Production, Microstructure, and Properties
,”
Crit. Rev. Solid State Mater. Sci.
,
45
(
4
), pp.
289
337
.
39.
Panova
,
T.
,
Efimova
,
A.
,
Berkovich
,
A.
, and
Efimov
,
A.
,
2020
, “
Plasticity Control of Poly(Vinyl Alcohol)–Graphene Oxide Nanocomposites
,”
RSC Adv.
,
10
(
40
), pp.
24027
24036
.
40.
Hirata
,
M.
,
Gotou
,
T.
,
Horiuchi
,
S.
,
Fujiwara
,
M.
, and
Ohba
,
M.
, “
Thin-Film Particles of Graphite Oxide 1: High-Yield Synthesis and Flexibility of the Particles
,”
Carbon
,
42
(
14
), pp.
2929
2937
.
41.
Medina
,
S. A.
,
Isaza
,
C. A.
, and
Meza
,
J. M.
,
2015
, “
Mechanical and Thermal Behavior of Polyvinyl Alcohol Reinforced With Aligned Carbon Nanotubes
,”
Matéria (Rio J.)
,
20
(
3
), pp.
794
802
.
42.
Das
,
B.
,
Prasad
,
K. E.
,
Ramamurty
,
U.
, and
Rao
,
C.
,
2009
, “
Nano-Indentation Studies on Polymer Matrix Composites Reinforced by Few-Layer Graphene
,”
Nanotechnology
,
20
(
12
), p.
125705
.
43.
Cao
,
Y. C.
,
Fu
,
Z.
,
Wei
,
W.
,
Zou
,
L.
,
Mi
,
T.
,
He
,
D.
,
Yan
,
C.
,
Liu
,
X.
,
Zhu
,
Y.
, and
Chen
,
L.
,
2015
, “
Reduced Graphene Oxide Supported Titanium Dioxide Nanomaterials for the Photocatalysis With Long Cycling Life
,”
Appl. Surf. Sci.
,
355
, pp.
1289
1294
.
44.
Maldonado-Magnere
,
S.
,
Yazdani-Pedram
,
M.
,
Aguilar-Bolados
,
H.
, and
Quijada
,
R.
,
2021
, “
Thermally Reduced Graphene Oxide/Thermoplastic Polyurethane Nanocomposites: Mechanical and Barrier Properties
,”
Polymers
,
13
(
1
), p.
85
.
45.
Shang
,
S.
,
Gan
,
L.
,
Yuen
,
C. W. M.
,
Jiang
,
S. X.
, and
Luo
,
N. M.
,
2015
, “
The Synthesis of Graphene Nanoribbon and Its Reinforcing Effect on Poly (Vinyl Alcohol)
,”
Composites, Part A
,
68
, pp.
149
154
.
46.
Yolshina
,
L.
,
Muradymov
,
R.
,
Vichuzhanin
,
D.
, and
Smirnova
,
E.
,
2016
, “
Enhancement of the Mechanical Properties of Aluminum-Graphene Composites
,”
AIP Conf. Proc.
,
AIP Publishing LLC
.
47.
Saboori
,
A.
,
Novara
,
C.
,
Pavese
,
M.
,
Badini
,
C.
,
Giorgis
,
F.
, and
Fino
,
P.
,
2017
, “
An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy
,”
J. Mater. Eng. Perform.
,
26
(
3
), pp.
993
999
.
You do not currently have access to this content.