This paper demonstrates the automatic design synthesis of continuum structures by the process of topology/shape optimization. The problem is solved as a discrete optimization problem using the genetic algorithm (GA). Past efforts using this approach have not been very effective due to the lack of an appropriate structural geometric representation which is highly essential to the success of the evolutionary processes of the GA. Based on the morphology of living creatures, a representation scheme has been developed using arrangements of skeleton and ‘flesh’ to define structural geometry. This scheme facilitates the transmission of topological and shape characteristics across generations in the evolutionary process, and will not render any structurally invalid designs. Good results are illustrated using this scheme to design a compliant mechanism and a cantilever beam. [S1050-0472(00)02104-8]

1.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
, pp.
197
224
.
2.
Yang
,
R. J.
, and
Chuang
,
C. H.
,
1994
, “
Optimal Topology Design Using Linear Programming
,”
Comput. Struct.
,
52
, pp.
265
275
.
3.
Atrek, E., 1989, “SHAPE: A Program for Shape Optimization of Continuum Structures,” Computer Aided Optimum Design of Structures: Applications, C. A. Brebbia and S. Hernandez, eds., Computational Mechanics Publications, Southampton, pp. 135–144.
4.
Russell, D. M., and Manoochehri, S. P., 1989, “A Two Dimensional Rule-Based Shape Synthesis Method,” Advances in Design Automation—1989—Vol. 2 Design Optimization, Ravani, B., ed., New York, pp. 217–223.
5.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
, pp.
885
896
.
6.
Eschenauer
,
H. A.
,
Kobelev
,
V. V.
, and
Schumacher
,
A.
,
1994
, “
Bubble Method for Topology and Shape Optimization of Structures
,”
Struct. Opt.
,
8
, pp.
42
51
.
7.
Tai
,
K.
, and
Fenner
,
R. T.
,
1999
, “
Optimum Shape and Topology Design Using the Boundary Element Method
,”
Int. J. Solids Struct.
,
36
, pp.
2021
2040
.
8.
Kumar
,
A. V.
, and
Gossard
,
D. C.
,
1996
, “
Synthesis of Optimal Shape and Topology of Structures
,”
ASME J. Mech. Des.
,
118
, pp.
68
74
.
9.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
,
1994
, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
,
116
, pp.
1005
1012
.
10.
Chapman
,
C. D.
, and
Jakiela
,
M. J.
,
1996
, “
Genetic Algorithm-Based Structural Topology Design with Compliance and Topology Simplification Considerations
,”
ASME J. Mech. Des.
,
118
, pp.
89
98
.
11.
Tai, K., and Chee, T. H., 1998, “Genetic Algorithm With Structural Morphology Representation for Topology Design Optimization,” Mechanics in Design, Gentle, C. R., and Hull, J. B., eds., Nottingham Trent University, Nottingham, pp. 827–836.
12.
Mortenson, M. E., 1997, Geometric Modeling, 2nd ed., Wiley, New York.
13.
Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA.
14.
Michalewicz, Z., 1994, Genetic Algorithms+Data Structures=Evolution Programs, 2nd ed., Springer-Verlag, Berlin.
15.
Schoenauer, M., 1995, “Shape Representations for Evolutionary Optimization and Identification in Structural Mechanics,” Genetic Algorithms in Engineering and Computer Science, Winter, G., Periaux, J., Galan, M., and Cuesta, P., eds., Wiley, Chichester, pp. 443–464.
16.
Her
,
I.
, and
Midha
,
A.
,
1987
, “
A Compliance Number Concept for Compliant Mechanisms, and Type Synthesis
,”
ASME J. Mech., Transm., Autom. Des.
,
109
, pp.
348
355
.
17.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
, pp.
156
165
.
18.
Ananthasuresh, G. K., Kota, S., and Kikuchi, N., 1994, “Strategies for Systematic Synthesis of Compliant MEMS,” Dynamic Systems and Control (Vol. 2 of 2) American Society of Mechanical Engineers, Dynamic Systems and Control Division, DSC. Vol. 55–2, Radcliffe, C. J., eds., New York, pp. 677–686.
19.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
, pp.
238
245
.
20.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mechanics of Structures and Machines
,
25
, pp.
493
524
.
21.
Larsen
,
U. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
,
1997
, “
Design and Fabrication of Compliant Micromechanisms and Structures with Negative Poisson’s Ratio
,”
J. Microelectromech. Syst.
,
6
, pp.
99
106
.
22.
Suzuki
,
K.
, and
Kikuchi
,
N.
,
1991
, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
93
, pp.
291
318
.
23.
Jog
,
C. S.
,
Haber
,
R. B.
, and
Bendsoe
,
M. P.
,
1994
, “
Topology Design With Optimized, Self-Adaptive Materials
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
1323
1350
.
24.
Kane, C., Jouve, F., and Schoenauer, M., 1995, “Structural Topology Optimization in Linear and Nonlinear Elasticity Using Genetic Algorithms,” Proceedings of the 1995 ASME Design Engineering Technical Conferences, Vol. 1 Advances in Design Automation, Azarm, S., Dutta, D., Eschenauer, H., Gilmore, B., McCarthy, M., and Yoshimura, M., eds., New York, pp. 385–392.
25.
Michalewicz
,
Z.
, and
Schoenauer
,
M.
,
1996
, “
Evolutionary Algorithms for Constrained Parameter Optimization Problems
,”
Evolut. Comput.
,
4
, pp.
1
32
.
You do not currently have access to this content.