This paper presents mobility analysis and type identification of a class of RPSPR kinematic chains with zero twist on any one of the links carrying a revolute and prismatic pairs. Conditions for detecting the presence of crank at any of the revolute pairs of the chain are derived. The mobility conditions have very interesting geometric interpretations which are used to identify the mechanism type. Based on the geometric conditions, sufficient conditions of rotatability have also been derived.

1.
Grashof, F., 1883, “Theorestische Machinenlehre,” Leipzig, pp. 113–118.
2.
Hunt K. H., 1959, Mechanisms and Motion, Wiley, New York.
3.
Harrisberger, L., 1963, “Mobility Analysis of a Three-Dimensional Four-Link Mechanism,” ASME paper 64-WA/MD-16.
4.
Harrisberger
,
L.
,
1964
, “
Space Crank Mechanisms
,”
Mach. Des.
,
36
(
10
), pp.
170
175
.
5.
Skreiner
,
M.
,
1967
, “
Methods to Identify the Mobility Regions of a Spatial Four-Link Mechanism
,”
J. Mech.
,
2
, pp.
425
427
.
6.
Ogawa
,
K.
,
Funabashi
,
H.
, and
Hayakawa
,
O.
,
1968
, “
On the Rotational Conditions of the Spatial Four-Bar Mechanisms
,”
Bull. JSME
,
11
(
43
), pp.
180
188
.
7.
Hunt
,
K. H.
,
1967
, “
Screw Axis and Mobility in Spatial Mechanisms via the Linear Complex
,”
J. Mech.
,
3
, pp.
307
327
.
8.
Jenkins
,
E. M.,
Jr.
,
Crossley
,
F. R. E.
, and
Hunt
,
K. H.
,
1969
, “
Gross Motion Attributes of Certain Spatial Mechanisms
,”
ASME J. Eng. Ind.
,
91
(
1
), pp.
83
90
.
9.
Nolle
,
H.
,
1969
, “
Ranges of Motion Transfer by the R-G-G-R Linkage
,”
J. Mech.
,
4
, pp.
145
157
.
10.
Freudenstein
,
F.
, and
Kiss
,
I. S.
,
1969
, “
Type Determination of Skew Four-Bar Mechanisms
,”
ASME J. Eng. Ind.
,
91
, pp.
220
224
.
11.
Bottema
,
O.
,
1971
, “
The Motion of the Skew Four-Bar
,”
J. Mech.
,
6
, pp.
69
79
.
12.
Gupta
,
K. V.
, and
Radcliffe
,
C. W.
,
1971
, “
Mobility Analysis of Planar and Spatial Mechanisms
,”
ASME J. Eng. Ind.
,
93
, pp.
125
130
.
13.
Freudenstein
,
F.
, and
Primrose
,
E. J. F.
,
1976
, “
On the Criteria for the Rotatability of the Cranks of a Skew Four-Bar Linkage
,”
ASME J. Eng. Ind.
,
98
, pp.
1285
1288
.
14.
Alizade
,
R. I.
, and
Sandor
,
G. N.
,
1985
, “
Determination of the Condition of Existence of Complete Crank Rotation and of the Instantaneous Efficiency of Spatial Four-Bar Mechanisms
,”
Mech. Mach. Theory
,
20
(
3
), pp.
155
163
.
15.
Lakshminarayana, K., and Rao, L. V. B., 1982, “Type Determination of the RSSR Mechanisms,” ASME Paper No. 82-DET-119.
16.
Williams
,
R. L.
, and
Reinholtz
,
C. F.
,
1987
, “
Mechanism Link Rotatability and Limit Position Analysis Using Polynomial Discriminants
,”
ASME J. Mech., Transm., Autom. Des.
,
109
(
2
), pp.
178
182
.
17.
Pamidi
,
P. R.
, and
Freudenstein
,
F.
,
1975
, “
On the Motion of a Class of Five-Link, R-C-R-C-R, Spatial Mechanisms
,”
ASME J. Eng. Ind.
,
97
(
1
), pp.
334
339
.
18.
Rastegar
,
J.
,
1989
, “
Movability Conditions with Transmission Angle Limitations for Spatial Mechanisms
,”
ASME J. Mech., Transm., Autom. Des.
,
111
, pp.
519
523
.
19.
Rastegar
,
J.
, and
Tu
,
Q.
,
1992
, “
Approximated Grashof-Type Movability Conditions for RSSR Mechanisms with Force Transmission Limitations
,”
ASME J. Mech. Des.
,
114
, pp.
74
81
.
20.
Rastegar
,
J.
, and
Tu
,
Q.
,
1996
, “
Geometrically Approximated Rotatability Conditions for Spatial RSRC Mechanisms with Joint Angle Limitations
,”
ASME J. Mech., Transm., Autom. Des.
,
111
, pp.
519
523
.
21.
Freudenstein, F., 1965, “On the Determination of Type of Spherical Four-Link Mechanisms,” Contemporary Problems in the Theory of Machines and Mechanisms, USSR Academy of Sciences, pp. 193–196.
22.
Gupta
,
K. C.
,
1986
, “
Rotatability Considerations for Spherical Four-Bar Linkages with Application to Robot Wrist Design
,”
ASME J. Mech., Transm., Autom. Des.
,
108
, pp.
387
391
.
23.
Savage
,
M.
, and
Hall
,
A. S.
,
1970
, “
Unique Description of All Spherical Four-Bar Linkages
,”
ASME J. Eng. Ind.
,
92
, pp.
559
563
.
24.
Mallik
,
A. K.
,
1994
, “
Mobility and Type Identification of Four-Link Mechanisms
,”
ASME J. Mech. Des.
,
116
, pp.
629
633
.
25.
Mallik A. K., Ghosh, A., and Dittrich, G., 1994, Kinematic Analysis and Synthesis of Mechanisms, CRC Press, Inc.
26.
Shukla
,
G.
, and
Mallik
,
A. K.
,
2000
, “
Detection of a Crank in Six-Link Planar Mechanisms
,”
Mech. Mach. Theory
,
35
, pp.
911
926
.
27.
Chace
,
M. A.
,
1965
, “
Solutions to the Vector Tetrahedron Equation
,”
ASME J. Eng. Ind.
,
87
(
2
), pp.
228
234
.
28.
Hartenberg, R. S., and Denavit, J., 1964, Kinematic Synthesis of Linkages, McGraw-Hill, New York.
29.
Suh
,
C. H.
,
1968
, “
Design of Space Mechanisms for Rigid-Body Guidance
,”
ASME J. Eng. Ind.
,
90
(
3
), pp.
499
506
.
30.
Yang
,
A. T.
,
1969
, “
Displacement Analysis of Spatial Five-Link Mechanisms Using 3×3 Matrices with Dual-Number Elements
,”
ASME J. Eng. Ind.
,
91
(
1
), pp.
152
157
.
31.
Soni, A. H., and Harrisberger, L., 1968, Application of 3×3 Screw Matrix to Kinematic and Dynamic Analysis of Mechanisms, VDI-Brichte.
32.
Soni
,
A. H.
, and
Pamidi
,
P. R.
,
1971
, “
Closed-Form Displacement Relations of a Five-Link R-R-C-C-R Spatial Mechanism
,”
ASME J. Eng. Ind.
,
93
, pp.
221
226
.
You do not currently have access to this content.