The article presents a unified algebraic approach for the modeling of the instantaneous motions of all linear elements, such as points, lines, and planes, embedded in a rigid body. The paper first addresses the Clifford algebra based displacement operator and its higher derivatives from which the coordinate-independent characteristic numbers with simple geometric meaning are defined. With Clifford algebra, the paper also presents the computation method and examples to demonstrate the process of obtaining the displacement operator and the characteristic numbers. Because of the coordinate independent feature, no tedious coordinate transformation typically found in the conventional instantaneous invariants method is needed.

1.
Bottema, O., 1961, “On Instantaneous Invariants,” Proceedings of International Conference for Teachers of Mechanisms, Yale University, New Haven, Connecticut, pp. 159–164.
2.
Veldkamp
,
G. R.
,
1967
, “
Canonical Systems and Instantaneous Invariants in Spatial Kinematics
,”
J. Mec.
,
2
, pp.
329
388
.
3.
Veldkamp, G. R., 1979, “Curvature Theory in Spatial Kinematics,” Proceedings of Fifth World Congress on the Theory of Machines and Mechanisms, Montreal, Canada, July, pp. 565–570.
4.
McCarthy
,
J. M.
, and
Roth
,
B.
,
1981
, “
The Curvature Theory of Line Trajectories in Spatial Kinematics
,”
ASME J. Mech. Des.
,
103
, pp.
718
724
.
5.
Ting
,
K. L.
, and
Soni
,
A. H.
,
1983
, “
Instantaneous Kinematics of a Plane in Space Motion
,”
ASME J. Mech., Transm., Autom. Des.
,
105
(
3
), pp.
552
559
.
6.
Kirson
,
Y.
, and
Yang
,
A. T.
,
1978
, “
Instantaneous Invariants in Three-Dimensional Kinematics
,”
ASME J. Appl. Mech.
,
45
, pp.
409
414
.
7.
Dimentberg, F. M., 1965, The Screw Calculus and Its Applications in Mechanics (in Russian), Moscow. (English translation: AD680993, Clearinghouse for Federal Technical and Scientific Information, Virginia).
8.
Kirson, Y., 1975, “Higher Order Curvature Theory in Space Kinematics,” Ph.D. Dissertation, University of California at Berkeley, 140 pp.
9.
Yang A. T., Kirson, Y., and Roth, B., 1975 “On a Kinematic Theory for Ruled Surfaces,” Proceedings of Fourth World Congress on the Theory of Machines and Mechanisms, Newcastle Upon Tyne, England, Sept., pp. 737–742.
10.
Hsia
,
L. M.
, and
Yang
,
A. T.
,
1981
, “
On the Principle of Transference in Three-Dimensional Kinematics
,”
ASME J. Mech. Des.
,
103
, pp.
652
656
.
11.
Bottema, O., and Roth, B., 1979, Theoretical Kinematics, North-Holland Publishing Company, New York, ISBN: 0-486-66346-9, pp. 558.
12.
McCarthy
,
J. M.
, and
Ravani
,
B.
,
1986
, “
Differential Kinematics of Spherical and Spatial Motions Using Kinematic Mapping
,”
ASME J. Appl. Mech.
,
53
, pp.
15
22
.
13.
McCarthy
,
J. M.
,
1987
, “
The Instantaneous Kinematics of Line Trajectories in Terms of a Kinematic Mapping of Spatial Rigid Motion
,”
ASME J. Mech., Transm., Autom. Des.
,
109
, pp.
95
100
.
14.
Lee
,
C.
,
Yang
,
A. T.
, and
Ravani
,
B.
,
1993
, “
Coordinate System Invariant Form of Instantaneous Invariants in Spatial Kinematics
,”
ASME J. Mech. Des.
,
115
, pp.
946
952
.
15.
Kumar
,
V.
,
1992
, “
Instantaneous Kinematics of Parallel-Chain Robotic Mechanisms
,”
ASME J. Mech. Des.
,
114
(
3
), pp.
349
358
.
16.
Etemadi-Zanganeh
,
K.
, and
Angeles
,
J.
,
1995
, “
Instantaneous Kinematics of General Hybrid Parallel Manipulators
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
581
588
.
17.
Wolf
,
A.
, and
Shoham
,
M.
,
2003
, “
Investigation of Parallel Manipulators Using Linear Complex Approximation
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
564
572
.
18.
Ghosal
,
A.
, and
Ravani
,
B.
,
2001
, “
A Differential-Geometric Analysis of Singularities of Point Trajectories of Serial and Parallel Manipulators
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
80
89
.
19.
Ball, R. S., 1900, A Treatise on the Theory of Screws, Cambridge University Press, Cambridge, UK, 544 pp., Chap. 26.
20.
Hunt, K. H., 1978, Kinematic Geometry of Mechanisms, Clarendon Press, Oxford, 465 pp.
21.
Karger, A., and Novak, J., 1985, Space Kinematics and Lie Groups, Gordon and Breach Science Publishers, Montreux, ISBN: 2-88124-023-2, 422 pp.
22.
Selig, J. M., 1996, Geometrical Method in Robotics, Springer, ISBN: 0-387-94728-0, pp. 269.
23.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
24.
Yang
,
A. T.
,
1969
, “
Displacement Analysis of Spatial Five Link Mechanisms Using 3×3 Matrices With Dual Number Elements
,”
ASME J. Mech., Transm., Autom. Des.
,
91
, pp.
152
157
.
25.
Samuel
,
A. E.
,
McAree
,
P. R.
, and
Hunt
,
K. H.
,
1991
, “
Unifying Screw Geometry and Matrix Transformations
,”
Int. J. Robot. Res.
,
10
, pp.
454
472
.
26.
Clifford
,
W. K.
,
1873
, “
Preliminary Sketch of Biquaternions
,”
Proc. London Math. Soc.
,
iv
(
64/65
), pp.
381
395
.
27.
Yang, A. T., 1963, “Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanims,” Doctoral dissertation, Columbia University, New York, N.Y., 241 pp.
28.
McCarthy, J. M., 1990, Introduction to Theoretical Kinematics, MIT Press, ISBN: 0-262-13252-4, pp. 160.
29.
McCarthy, J. M., 2000, Geometric Design of Linkages, Springer Verlag, ISBN: 0-387-98983-8, pp. 311.
30.
Selig
,
J. M.
,
2000
, “
Clifford Algebra of Points, Lines and Planes
,”
Robotica
,
18
, pp.
545
556
.
31.
Selig, J. M., 2001, “Robot Kinematics and Flags,” Geometric Algebra with Applications in Science and Engineering (Corrochano, E. B. and Sobczyk, G., eds.), Birkha¨user, ISBN: 0-8176-4199-8, pp. 211–234 & 553.
32.
Roth
,
B.
,
1967
, “
On the Screw Axes and Other Special Lines Associated With Spatial Displacements of a Rigid Body
,”
ASME J. Eng. Ind.
,
89
, pp.
102
110
.
33.
Papantonopoulou, Aigli, 2002, Algebra: Pure and Applied, Prentice-Hall, Inc., New Jersey, ISBN 0-13-088254-2, pp. 550.
34.
McCarthy
,
J. M.
,
1987
, “
On the Scalar and Dual Formulations of the Curvature Theory of Line Trajectories
,”
ASME J. Mech. Transm. Autom. Des.
,
109
, pp.
101
106
.
35.
Veldkamp
,
G. R.
,
1976
, “
On the Use of Dual Numbers, Vectors and Matrices in Instantaneous, Spatial Kinematics
,”
Mech. Mach. Theory
,
11
(
2
), pp.
141
156
.
36.
Ting, K. L., 1982, “Three-Dimensional Kinematic Analysis of Tangent-Plane Motion,” Ph.D. dissertation, Oklahoma State University, Stillwater, OK.
37.
Tsai
,
L. W.
, and
Roth
,
B.
,
1973
, “
Incompletely Specified Displacements: Geometry and Spatial Linkage Synthesis
,”
ASME J. Eng. Ind.
,
95
(
3
), pp.
725
736
.
38.
Ablamowicz, R., 1996, “Clifford Algebra Computations With Maple,” Clifford (Geometric) Algebra with Applications Physics, Mathematics, and Engineering (Baylis, William E., ed.), Birkha¨user, Boston, ISBN: 0-8176-3868-7, pp. 463–501.
You do not currently have access to this content.