Abstract

This paper presents a global optimization method for continuous design variables. We call this method a generalized random tunneling algorithm (GRTA) because this method can treat the behavior constraints as well as the side constraints without using penalty parameters for the behavior constraints. The GRTA consists of three phases, that is, the minimization phase, the tunneling phase, and the constraint phase. In the minimization phase, local search technique, which is based on the gradient of the objective and constraint functions, is used. The objective of the tunneling phase is to find a point that improves the objective function obtained in the minimization phase. In the constraint phase, the feasibility of the point obtained in the tunneling phase is checked. By iterating these three phases, global or quasi-optimum may be obtained. Through mathematical and structural optimization problems, the validity and efficiency of the GRTA are examined.

1.
Vanderplaats
,
G. N.
, 1999, “
Numerical Optimization Techniques for Engineering Design with Applications
,” VR&D.
2.
Horst
,
R.
, and
Paradalos
,
P. M.
, 1995,
Handbook of Global Optimization
,
Kluwer Academic
, Dordrecht.
3.
Rao
,
S. S.
, 1996,
Engineering Optimization: Theory and Practice
,
Wiley InterScience
, New York.
4.
Rinnooy Kan
,
A. H. G.
, and
Timmer
,
G. T.
, 1987, “
Stochastic Global Optimization Methods Part 1: Clustering Methods
,”
Math. Program.
0025-5610,
39
, pp.
27
59
.
5.
Pardalos
,
P. M.
, and
Romeijin
,
E.
, 2002,
Handbook of Global Optimization Volume 2
,
Kluwer Academic
, Dordrecht.
6.
Kirkpatrick
,
S.
,
Gellat
,
C. D.
, and
Vecchi
,
M. P.
, 1983, “
Optimization by Simulated Annealing
,”
Science
0036-8075,
220
, pp.
671
680
.
7.
Szu
,
H.
, and
Hartley
,
R.
, 1987, “
Fast Simulated Annealing
,”
Phys. Lett. A
0375-9601,
122
(
3,4
), pp.
157
162
.
8.
Glover
,
F.
, 1989, “
Tabu Search—Part 1
,”
ORSA J. Comput.
0899-1499,
1
, pp.
190
206
.
9.
Glover
,
F.
, 1990, “
Tabu Search—Part 2
,”
ORSA J. Comput.
0899-1499,
2
, pp.
4
32
.
10.
Levy
,
A. V.
, and
Montalvo
,
A.
, 1985, “
The Tunneling Algorithm for the Global Minimization Functions
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
16
, pp.
15
29
.
11.
Levy
,
A. V.
, and
Gomez
,
S.
, 1985, “
The Tunneling Method Applied to Global Optimization
,”
Numerical Optimization
, pp.
213
244
.
12.
Yao
,
Y.
, 1989, “
Dynamic Tunneling Algorithm for Global Optimization
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
19
, pp.
1222
1230
.
13.
Cetin
,
B. C.
,
Barhe
,
J.
, and
Burdick
,
J. W.
, 1993, “
Terminal Repeller Unconstrained Subenergy Tunneling (TRUST) for Fast Global Optimization
,”
J. Optim. Theory Appl.
0022-3239,
77
, pp.
97
126
.
14.
Sakamoto
,
J.
, and
Oda
,
J.
, 1993, “
A Technique of Optimal Layout Design for Truss Structures using Genetic Algorithm
,”
The 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conferences, Part 4
, pp.
2402
2408
.
You do not currently have access to this content.