This paper describes a new method to synthesize adjustable four-bar linkages, both in planar and spherical form. This method uses fixed ground pivots and an adjustable length for input and output links. A new application of Burmester curves for adjustable linkages is introduced, and a numerical example is discussed. This paper also compares a conventional synthesis method (nonadjustable linkage) to the new method. Nonadjustable four-bar linkages provide limited solutions for five-position synthesis. Adjustable linkages generate one infinity of solution choices. This paper also shows that the nonadjustable solutions are special cases of adjustable solutions. This new method can be extended to six position synthesis, with adjustable ground pivots locations.

1.
Sandor
,
G. N.
, 1959, “
A General Complex-Number Method for Plane Kinematic Synthesis with Applications
,” Ph.D. thesis, Columbia University, New York.
2.
McGovern
,
J. F.
, and
Sandor
,
G. N.
, 1972, “
Kinematic Synthesis of Adjustable Mechanisms, Part 1: Function Generation
,”
ASME Mechanisms Conference
, San Francisco, CA, pp.
417
422
.
3.
McGovern
,
J. F.
, and
Sandor
,
G. N.
, 1972, “
Kinematic Synthesis of Adjustable Mechanisms, Part 2: Path Generation
,”
ASME Mechanisms Conference
, San Francisco, CA, pp.
423
429
.
4.
Yuan
,
L.
, and
Rastegar
,
J.
, 2002, “
A Systematic Method for Kinematics Synthesis of High-Speed Mechanisms with Optimally Integrated Smart Materials
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
14
20
.
5.
Carricato
,
M.
,
Parenti-Castelli
,
V.
, and
Duffy
,
J.
, 2001, “
Inverse Static Analysis of a Planar System with Flexural Pivots
,”
ASME J. Mech. Des.
1050-0472,
123
, pp.
43
50
.
6.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2003, “
A Computational Approach to the Number of Synthesis of Linkages
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
110
118
.
7.
Handra-Luca
,
V.
, 1972, “
The Study of Adjustable Oscillating Mechanisms
,” ASME paper 72-Mech-24.
8.
Chuenchom
,
T.
,
and
Kota
,
S.
, 1994, “
Computer Aided Synthesis of Adjustable Robotic Mechanisms
,”
Proceedings of the 1994 ASME Design Technical Conference
,
Minneapolis
, MN,
ASME
, New York, DE-Vol.
70
, pp.
281
288
.
9.
Chuenchom
,
T.
, and
Kota
,
S.
, 1994, “
Analytical Synthesis of Adjustable Dyads and Triads for Designing Adjustable Mechanisms
,”
Proceedings, the 1994 ASME Design Technical Conference
,
Minneapolis
, MN,
ASME
, New York, DE-Vol.
70
, pp.
467
477
.
10.
Chuenchom
,
T.
, 1993, “
Kinematic Synthesis of Adjustable Robotic Mechanism
,” Ph.D. thesis, The University of Michigan.
11.
Krovi
,
V.
,
Ananthasuresh
,
G. K.
, and
Kumar
,
V.
, 2002, “
Kinematic and Kinetostatic Synthesis of Planar Coupled Serial Chain Mechanism
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
301
312
.
12.
Erdman
,
A. G.
, and
Sandor
,
G. N.
, 1997,
Mechanism Design: Analysis and Synthesis
, Vol.
1
,
Prentice–Hall
, Englewood Cliffs, NJ.
13.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
, 1967,
Kinematics and Mechanism Design
,
University of Colorado
, Boulder, Colorado.
14.
Sandor
,
G. N.
, and
Erdman
,
A. G.
, 1984,
Advance Mechanism Design: Analysis and Synthesis
, Vol.
2
,
Prentice–Hall
, Englewood Cliffs, NJ.
15.
Chiang
,
C. H.
, 1988,
Kinematics of Spherical Mechanism
,
Cambridge University Press
, Cambridge, UK.
16.
Wampler
,
C. W.
, 2004, “
Displacement Analysis of Spherical Mechanisms Having Three or Fewer Loops
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
93
100
.
17.
McCarthy
,
J. M.
, 1994,
The Design of Spatial Mechanism
,
Tutorial for the ASME technical conference
, Minneapolis, MN.
18.
McCarthy
,
J. M.
, 2000,
Geometric Design of Linkages
,
Springer-Verlag Series on Interdisciplinary Applied Mathematics
, Vol.
11
,
Springer
, Berlin.
19.
Tao
,
D. C.
, 1964,
Applied Linkage Synthesis
,
Addison–Wesley
, Reading, MA.
You do not currently have access to this content.