In order to compute the constraint moments and forces, together referred here as wrenches, in closed-loop mechanical systems, it is necessary to formulate a dynamics problem in a suitable manner so that the wrenches can be computed efficiently. A new constraint wrench formulation for closed-loop systems is presented in this paper using two-level recursions, namely, subsystem level and body level. A subsystem is referred here as the serial- or tree-type branches of a spanning tree obtained by cutting the appropriate joints of the closed loops of the system at hand. For each subsystem, unconstrained Newton–Euler equations of motion are systematically reduced to a minimal set in terms of the Lagrange multipliers representing the constraint wrenches at the cut joints and the driving torques/forces provided by the actuators. The set of unknown Lagrange multipliers and the driving torques/forces associated to all subsystems are solved in a recursive fashion using the concepts of a determinate subsystem. Next, the constraint forces and moments at the uncut joints of each subsystem are calculated recursively from one body to another. Effectiveness of the proposed algorithm is illustrated using a multiloop planar carpet scraping machine and the spatial RSSR (where R and S stand for revolute and spherical, respectively) mechanism.

1.
Eberhard
,
P.
, and
Schiehlen
,
W.
, 2006, “
Computational Dynamics of Multibody Systems: History, Formalisms, and Applications
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
(
1
), pp.
3
12
.
2.
Roberson
,
R. E.
, and
Schwertassek
,
R.
, 1988,
Dynamics of Multibody Systems
,
Springer-Verlag
,
Berlin
.
3.
Schiehlen
,
W.
, 1990,
Multibody Systems Handbook
,
Springer-Verlag
,
Berlin
.
4.
Shabana
,
A. A.
, 2005,
Dynamics of Multibody Systems
,
Cambridge University Press
,
New York
.
5.
Paul
,
B.
, 1975, “
Analytical Dynamics of Mechanisms: A Computer Oriented Overview
,”
Mech. Mach. Theory
0094-114X,
10
, pp.
481
507
.
6.
Nikravesh
,
P. E.
, 1988,
Computer-Aided Analysis of Mechanical Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
7.
Nikravesh
,
P. E.
, and
Gim
,
G.
, 1993, “
Systematic Construction of the Equations of Motion for Multibody Systems Containing Closed Kinematic Loops
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
143
149
.
8.
Kim
,
S. S.
, and
Vanderploeg
,
M. J.
, 1986, “
A General and Efficient Method for Dynamic Analysis of Mechanical Systems Using Velocity Transformation
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
108
(
2
), pp.
176
182
.
9.
Kane
,
T. R.
, and
Levinson
,
D. A.
, 1983, “
Multibody Dynamics
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
1071
1078
.
10.
Huston
,
R. L.
, 2005, “
Advances in Computational Methods for Multibody System Dynamics
,”
Comput. Model. Eng. Sci.
1526-1492,
10
(
2
), pp.
143
152
.
11.
Yen
,
J.
, and
Petzold
,
L. R.
, 1998, “
An Efficient Newton-Type Iteration for the Numerical Solution of Highly Oscillatory Constrained Multibody Dynamic Systems
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
19
(
5
), pp.
1513
1534
.
12.
Baumgarte
,
J.
, 1972, “
Stabilization of Constraints and Integrals of Motion
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
, pp.
1
16
.
13.
Jerkovskey
,
W.
, 1978, “
The Structure of Multibody Dynamics Equations
,”
J. Guid. Control
0162-3192,
1
(
3
), pp.
173
182
.
14.
Rodriguez
,
G.
,
Jain
,
A.
, and
Kreutz-Delgado
,
K.
, 1991, “
A Spatial Operator Algebra for Manipulator Modeling and Control
,”
Int. J. Robot. Res.
0278-3649,
10
(
4
), pp.
371
381
.
15.
Rodriguez
,
G.
,
Jain
,
A.
, and
Kreutz-Delgado
,
K.
, 1992, “
Spatial Operator Algebra for Multibody System Dynamics
,”
J. Astronaut. Sci.
0021-9142,
40
(
1
), pp.
27
50
.
16.
Featherstone
,
R.
, 1987,
Robot Dynamics Algorithms
,
Kluwer Academic
,
New York
.
17.
Anderson
,
K. S.
, and
Critchley
,
J. H.
, 2003, “
A Generalized Recursive Coordinate Reduction Method for Multibody System Dynamics
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
1
(2&3), pp.
181
199
.
18.
Blajer
,
W.
, 2004, “
On the Determination of Joint Reactions in Multibody Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
341
350
.
19.
Saha
,
S. K.
, 1997, “
A Decomposition of the Manipulator Inertia Matrix
,”
IEEE Trans. Rob. Autom.
1042-296X,
13
(
2
), pp.
301
304
.
20.
Saha
,
S. K.
, 1999, “
Dynamics of Serial Multibody Systems Using the Decoupled Natural Orthogonal Complement Matrices
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
986
996
.
21.
Serban
,
R.
, and
Haug
,
E. J.
, 2000, “
Globally Independent Coordinates for Real-Time Vehicle Simulation
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
575
582
.
22.
Cuadrado
,
J.
,
Dopico
,
D.
,
Gonzalez
,
M.
, and
Naya
,
M. A.
, 2004, “
A Combined Penalty and Recursive Real-Time Formulation for Multibody Dynamics
,”
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
602
608
.
23.
Chaudhary
,
H.
, and
Saha
,
S. K.
, 2005, “
Matrix Formulation of Constraint Wrenches for Serial Manipulators
,”
International Conference on Robotics and Automation (ICRA 2005)
,
Barcelona, Spain
, Apr. 18–22, pp.
4647
4652
.
24.
McPhee
,
J. J.
, 1996, “
On the Use of Linear Graph Theory in Multibody System Dynamics
,”
Nonlinear Dyn.
0924-090X,
9
, pp.
73
90
.
25.
Shai
,
O.
, and
Penneck
,
G. R.
, 2006, “
Extension of Graph Theory to the Duality Between Static Systems and Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
128
(
1
), pp.
179
191
.
26.
Muller
A.
, 2004, “
Elimination of Redundant Cut Joint Constraints for Multibody System Models
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
488
494
.
27.
Saha
,
S. K.
, and
Schiehlen
,
W. O.
, 2001, “
Recursive Kinematics and Dynamics for Closed Loop Multibody Systems
,”
Mech. Struct. Mach.
0890-5452,
29
(
2
), pp.
143
175
.
28.
Angeles
,
J.
, and
Lee
,
S.
, 1988, “
The Formulation of Dynamical Equations of Holonomic Mechanical Systems Using a Natural Orthogonal Complement
,”
ASME J. Appl. Mech.
0021-8936,
55
(
1
), pp.
243
244
.
29.
Xi
,
F.
, 2005, “
Tripod Dynamics and Its Inertia Effect
,”
ASME J. Mech. Des.
1050-0472,
127
(
1
), pp.
144
149
.
30.
Strang
,
G.
, 1998,
Linear Algebra and Its Applications
,
Harcourt, Brace, Jovanovich
,
Orlando
.
31.
Shabana
,
A. A.
, 1994,
Computational Dynamics
,
Wiley
,
New York
.
32.
Khan
,
W. A.
,
Krovi
,
V. N.
,
Saha
,
S. K.
, and
Angeles
,
J.
, 2005, “
Recursive Kinematics and Inverse Dynamics for a Planar 3R Parallel Manipulator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
(
4
), pp.
529
536
.
33.
Chuadhary
,
H.
, and
Saha
,
S. K.
, 2007, “
Balancing of Four-Bar Linkages Using Maximum Recursive Dynamic Algorithm
,”
Mech. Mach. Theory
0094-114X,
42
(
2
), pp.
216
232
.
34.
Saha
,
S. K.
,
Prasad
,
R.
, and
Mandal
,
A. K.
, 2003, “
Use of Hoeken’s and Pantograph Mechanisms for Carpet Scraping Operations
,”
Proceedings of the 11th National Conference on Machines and Mechanisms
,
IIT, Delhi
, Dec. 18–19, pp.
732
738
.
35.
MSC.ADAMS (Automated Dynamic Analysis of Mechanical System), Version 2005.0.0, July 22, 2004.
36.
Duffy
,
J.
, 1978, “
Displacement Analysis of the Generalized RSSR Mechanism
,”
Mech. Mach. Theory
0094-114X,
13
, pp.
533
541
.
37.
Bagci
,
C.
, 1983, “
Complete Balancing of Space Mechanisms-Shaking Force Balancing, ASME Journal of Mechanisms, Transmissions
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
609
616
.
38.
Angeles
,
J.
, 1997,
Fundamental of Robotic Mechanical Systems: Theory, Methods, and Algorithms
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.