This paper deals with the strongly nonstationary squeeze of an oil film at the interface between the chain pin and pulley in chain belt continuously variable transmission. We concentrate on the squeeze motion as it occurs as soon as the pin enters the pulley groove. The duration time to complete the squeeze process compared with the running time the pin takes to cover the entire arc of contact is fundamental to understand whether direct asperity-asperity contact occurs between the two approaching surfaces to clarify what actually is the lubrication regime (elastohydrodynamic lubrication (EHL), mixed, or boundary) and to verify if the Hertzian pressure distribution at the interface can properly describe the actual normal stress distribution. The Hertzian pressure solution is usually taken as a starting point to design the geometry of the pin surface; therefore, it is of utmost importance for the designers to know whether their hypothesis is correct or not. Taking into account that the traveling time, the pin spends in contact with the pulley groove, is of about 0.01 s, we show that rms surface roughness less than 0.1μm, corresponding to values adopted in such systems, guarantees a fully lubricated EHL regime at the interface. Therefore, direct asperity-asperity contact between the two approaching surfaces is avoided. We also show that the Hertzian solution does not properly represent the actual pressure distribution at the pin-pulley interface. Indeed, after few microseconds a noncentral annular pressure peak is formed, which moves toward the center of the pin with rapidly decreasing speed. The pressure peak can grow up to values of several gigapascals. Such very high pressures may cause local overloads and high fatigue stresses that must be taken into account to correctly estimate the durability of the system.

1.
Carbone
,
G.
,
Mangialardi
,
L.
, and
Mantriota
,
G.
, 2002, “
Fuel Consumption of a Mid Class Vehicle With Infinitely Variable Transmission
,”
SAE Transactions 2001 - Journal of Engines
, Section 3, Vol.
110
(3), pp.
2474
2483
.
2.
Carbone
,
G.
,
Mangialardi
,
L.
,
Mantriota
,
G.
, and
Soria
,
L.
, 2004, “
Performance of a City Bus Equipped With a Toroidal Traction Drive
,”
IASME Transactions
,
1
(
1
), pp.
16
23
.
3.
Mantriota
,
G.
, 2005, “
Fuel Consumption of a Vehicle With Power Split CVT System
,”
Int. J. Veh. Des.
0143-3369,
37
(
4
), pp.
327
342
.
4.
Simons
,
S. W. H.
,
Klaassen
,
T. W. G. L.
,
Steinbuch
,
M.
,
Veenhuizen
,
P. A.
, and
Carbone
,
G.
, “
Shift Dynamics Modelling for Optimization Variator Slip Control in a Push-Belt CVT
,”
Int. J. Veh. Des.
0143-3369,
48
(
1-2
), pp.
45
64
.
5.
Carbone
,
G.
,
Mangialardi
,
L.
, and
Mantriota
,
G.
, 2005, “
The Influence of Pulley Deformations on the Shifting Mechanisms of MVB-CVT
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
103
113
.
6.
Carbone
,
G.
,
Mangialardi
,
L.
,
Bonsen
,
B.
,
Tursi
,
C.
,
Veenhuizen
,
P. A.
, and
Dynamics
,
C. V. T.
, 2007, “
Theory and Experiments
,”
Mech. Mach. Theory
0094-114X,
42
(
4
), pp.
409
428
.
7.
Srnik
,
J.
, and
Pfeiffer
,
F.
, 1997, “
Dynamics of CVT Chain Drives: Mechanical Model and Verification
,” ASME Paper No. DETC97/VIB-4127.
8.
Saito
,
T.
, 2007, “
Simulation of Stress on Elements of CVT Metal Pushing V-Belt Under Transient Operating Conditions
,”
Proceedings of the International Congress on Continuously Variable and Hybrid Transmissions
, Yokohama, Paper No. 20074544.
9.
Kanehara
,
S.
,
Fujii
,
T.
, and
Kitagawa
,
T.
, 1994, “
A Study of a Metal Pushing V-Belt Type CVT-Part 3: What Forces Act on Metal Blocks?
,” SAE Paper No. 940735.
10.
Carbone
,
G.
,
Scaraggi
,
M.
, and
Mangialardi
,
L.
, “
EHL-Squeeze at Pin-Pulley Interface in CVTs: Influence of Lubricant Rheology
,”
Tribol. Int.
0301-679X, submitted.
11.
Christensen
,
H.
, 1962, “
The Oil Film in a Closing Gap
,”
Proc. R. Soc. Lond. A Math. Phys. Sci.
,
266
, pp.
312
328
. 0080-4630
12.
Lee
,
K. M.
, and
Cheng
,
H. S.
, 1973, “
The Pressure and Deformation Profiles Between Two Normally Approaching Lubricated Cylinders
,”
ASME J. Lubr. Technol.
0022-2305,
95
(
3
), pp.
308
317
.
13.
Safa
,
M. M. A.
, and
Gohar
,
R.
, 1986, “
Pressure Distribution Under a Ball Impacting a Thin Lubricant Layer
,”
Trans. ASME, J. Tribol.
,
108
, pp.
372
376
. 0742-4787
14.
Yang
,
P.
, and
Wen
,
S.
, 1991, “
Pure Squeeze Action in an Isothermal Elastohydrodynamic Lubricated Spherical Conjunction. Part 1: Theory and Dynamic Load Results
,”
Wear
0043-1648,
142
, pp.
1
16
.
15.
Yang
,
P.
, and
Wen
,
S.
, 1991, “
Pure Squeeze Action in an Isothermal Elastohydrodynamic Lubricated Spherical Conjunction. Part 2: Constant Speed and Constant Load Results
,”
Wear
0043-1648,
142
, pp.
17
30
.
16.
Wong
,
P. L.
,
Lingard
,
S.
, and
Cameron
,
A.
, 1992, “
The High Pressure Impact Microviscometer
,”
STLE Tribol. Trans.
1040-2004,
35
(
3
), pp.
500
508
.
17.
Dowson
,
D.
, and
Wang
,
D.
, 1994, “
An Analysis of the Normal Bouncing of a Solid Elastic Ball on an Oily Plate
,”
Wear
0043-1648,
179
, pp.
29
37
.
18.
Larsson
,
R.
, and
Höglund
,
E.
, 1994, “
Elastohydrodynamic Lubrication at Pure Squeeze Motion
,”
Wear
0043-1648,
179
, pp.
39
43
.
19.
Larsson
,
R.
, and
Höglund
,
E.
, 1995, “
Numerical Simulation of a Ball Impacting and Rebounding a Lubricated Surface
,”
Trans. ASME, J. Tribol.
0742-4787,
117
, pp.
94
102
.
20.
Chu
,
H. M.
,
Li
,
W. L.
, and
Chen
,
M. D.
, 2006, “
Elastohydrodynamic Lubrication of Circular Contacts at Pure Squeeze Motion With Non-Newtonian Lubricants
,”
Tribol. Int.
0301-679X,
39
, pp.
897
905
.
21.
Guo
,
F.
,
Kaneta
,
M.
,
Wang
,
J.
,
Nishikawa
,
H.
, and
Yang
,
P.
, 2006, “
Occurrence of a Noncentral Dimple in Squeezing EHL Contacts
,”
ASME J. Tribol.
0742-4787,
128
, pp.
632
640
.
22.
Hamrock
,
B. J.
, 1994,
Fundamentals of Fluid Film Lubrication
,
McGraw-Hill
,
New York
.
23.
Dowson
,
D.
, 1995, “
Elastohydrodynamic and Micro-Elastohydrodynamic Lubrication
,”
Wear
0043-1648,
190
, pp.
125
138
.
24.
Moore
,
A. J.
, 1997, “
The Behaviour of Lubricants in Elastohydrodynamic Contacts
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
211
, pp.
91
106
.
25.
Carbone
,
G.
, and
Scaraggi
,
M.
, 2008, Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, Confidential Report No. 3.
26.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
27.
Maugis
,
D.
,
Contact Adhesion and Rupture of Elastic Solids
(
Springer Series in Solid State Sciences
),
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.