An omnidirectional mobile robot is able, kinematically, to move in any direction regardless of current pose. To date, nearly all designs and analyses of omnidirectional mobile robots have considered the case of motion on flat, smooth terrain. In this paper, an investigation of the design and control of an omnidirectional mobile robot for use in rough terrain is presented. Kinematic and geometric properties of the active split offset caster drive mechanism are investigated along with system and subsystem design guidelines. An optimization method is implemented to explore the design space. The use of this method results in a robot that has higher mobility than a robot designed using engineering judgment. A simple kinematic controller that considers the effects of terrain unevenness via an estimate of the wheel-terrain contact angles is also presented. It is shown in simulation that under the proposed control method, near-omnidirectional tracking performance is possible even in rough, uneven terrain.

1.
Fish
,
S.
, 2004, “
UGV's in Future Combat Systems
,”
Proceedings of the SPIE–The International Society for Optical Engineering, Unmanned Ground Vehicle Technology VI
, Vol.
5422
, pp.
288
291
.
2.
Blitch
,
J.
, 1996, “
Artificial Intelligence Technologies for Robot Assisted Urban Search and Rescue
,”
Expert Systems with Applications
,
11
(
2
), pp.
109
124
.
3.
Erickson
,
J.
, 2006, “
Living the Dream: An Overview of the Mars Exploration Project
,”
IEEE Trans. Rob. Autom.
1042-296X,
13
(
2
), pp.
12
18
.
4.
Cheng
,
J.
,
Gao
,
L.
, and
Wang
,
H.
, 2006, “
Steering Analysis of Tracked Vehicles Based on Skid Condition
,”
Chin. J. Mech. Eng.
0577-6686,
42
, pp.
192
195
.
5.
Ishigami
,
G.
,
Miwa
,
A.
, and
Yoshida
,
K.
, 2005 “
Steering Trajectory Analysis of Planetary Exploration Rovers Based on All-Wheel Dynamics Model
,”
Proceedings of the Eighth International Symposium on Artificial Intelligence, Robotics and Automation in Space
, pp.
121
128
.
6.
Iagnemma
,
K.
, and
Dubowsky
,
S.
, 2004, “
Mobile Robots in Rough Terrain: Estimation, Motion Planning, and Control With Application to Planetary Rovers
,”
Springer Tracts in Advanced Robotics (STAR) Series
,
Springer
,
New York
, Vol.
12
.
7.
Fujisawa
,
S.
,
Ohkubo
,
K.
,
Yoshida
,
T.
,
Satonaka
,
N.
,
Shidama
,
Y.
, and
Yamaura
,
H.
, 1997, “
Improved Moving Properties of an Omnidirectional Vehicle Using Stepping Motor
,”
Proceedings of the 36th Conference on Decision and Control
, San Diego, pp.
3654
3657
.
8.
Williams
,
R.
,
Carter
,
B.
,
Gallina
,
P.
, and
Rosati
,
G.
, 2002, “
Wheeled Omni-Directional Robot Dynamics Including Slip
,”
Proceedings of the 2002 ASME Design Engineering Technical Conferences
.
9.
Muir
,
P.
, and
Neuman
,
C.
, 1987 “
Kinematic Modeling for Feedback Control of an Omnidirectional Wheeled Mobile Robot
,”
Proceedings of the 1987 IEEE International Conference on Robotics and Automation
.
10.
Bradley
,
A.
,
Miller
,
S.
,
Creary
,
G.
,
Miller
,
N.
,
Begley
,
M.
, and
Misch
,
N.
, 2005, “
Mobius, An Omnidirectional Robot Utilizing Mecanum Wheels and Fuzzy Logic Control
,”
Proceedings of the 28th Annual AAS Rocky Mountain Guidance and Control Conference
, pp.
251
266
.
11.
Ferriere
,
L.
, and
Raucent
,
B.
, 1998, “
ROLLMOBS, A New Universal Wheel Concept
,”
Proceedings of the 1998 IEEE International Conference on Robotics and Automation
, Leuven, pp.
1877
1882
.
12.
West
,
A. M.
, and
Asada
,
H.
, 1997, “
Design of Ball Wheel Mechanisms for Omnidirectional Vehicles With Full Mobility and Invariant Kinematics
,”
ASME J. Mech. Des.
0161-8458,
199
(
2
), pp.
153
161
.
13.
Alexander
,
J. C.
, and
Maddocks
,
J. H.
, 1989, “
On the Kinematics of Wheeled Mobile Robots
,”
Int. J. Robot. Res.
0278-3649,
8
(
5
), pp.
15
27
.
14.
Low
,
K. H.
, and
Leow
,
Y. P.
, 2005, “
Kinematic Modeling, Mobility Analysis and Design of Wheeled Mobile Robots
,”
Adv. Rob.
0169-1864,
19
, pp.
73
99
.
15.
Gracia
,
L.
, and
Tornero
,
J.
, 2007, “
A New Geometric Approach to Characterize the Singularity of Wheeled Mobile Robots
,”
Robotica
0263-5747,
25
, pp.
627
638
.
16.
Carlson
,
J.
, and
Murphy
,
R.
, 2005, “
How UGVs Physically Fail in the Field
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
(
3
), pp.
423
437
.
17.
Wood
,
C.
,
Davidson
,
M.
,
Rich
,
S.
,
Keller
,
J.
, and
Maxfield
,
R.
, 1999, “
T2 Omni-Directional Vehicle Mechanical Design
,”
Proceedings of the SPIE Conference on Mobile Robots XIV
, Boston, pp.
69
76
.
18.
Park
,
T.
,
Lee
,
J.
,
Yi
,
B.
,
Kim
,
W.
, and
You
,
B.
,
Oh
,
S.
, 2002, “
Optimal Design and Actuator Sizing of Redundantly Actuated Omni-Directional Mobile Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
732
737
.
19.
Yu
,
H.
,
Dubowsky
,
S.
, and
Skwersky
,
A.
, 2000, “
Omni-Directional Mobility Using Active Split Offset Castors
,”
Proceedings of the 26th Biennial Mechanisms and Robotics Conference of the 2000 ASME Design Engineering Technical Conferences
.
20.
Spenko
,
M.
,
Yu
,
H.
, and
Dubowsky
,
S.
, 2002, “
Analysis and Design of an Omnidirectional Platform for Operation on Non-Ideal Floors
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
, Washington, DC.
21.
Saha
,
K.
,
Ángeles
,
J.
, and
Darcovich
,
J.
, 1995, “
The Design of Kinematically Isotropic Rolling Robots With Omnidirectional Wheels
,”
Mech. Mach. Theory
0094-114X,
30
(
8
), pp.
1127
1137
.
22.
Gracia
,
L.
, and
Tornero
,
J.
, 2008, “
Kinematic Models and Isotropy Analysis of Wheeled Mobile Robots
,”
Robotica
0263-5747,
26
, pp.
587
599
.
23.
Minami
,
T.
,
Tatsumisago
,
M.
, and
Wakihara
,
M.
, 2004,
Solid State Ionics for Batteries
,
Springer-Verlag
,
Berlin
.
24.
Bekker
,
G.
, 1956,
Theory of Land Locomotion, the Mechanics of Vehicle Mobility
,
University of Michigan Press
,
Ann Arbor, MI
.
25.
Yong
,
R.
,
Fattah
,
E.
, and
Skiadas
,
N.
, 1984,
Vehicle Traction Mechanics
,
Elsevier
,
Amsterdam
.
26.
Wong
,
J.
, 1989,
Terramechanics and Offroad Vehicles
,
Elsevier
,
Amsterdam
.
27.
Cheng
,
Y.
,
Maimone
,
M.
, and
Matthies
,
L.
, 2006, “
Visual Odometry on the Mars Exploration Rovers
,”
IEEE Rob. Autom. Mag.
1070-9932,
13
(
2
), pp.
54
62
.
You do not currently have access to this content.