Economic and physical considerations often lead to equilibrium problems in multidisciplinary design optimization (MDO), which can be captured by MDO problems with complementarity constraints (MDO-CC)—a newly emerging class of problem. Due to the ill-posedness associated with the complementarity constraints, many existing MDO methods may have numerical difficulties solving this class of problem. In this paper, we propose a new decomposition algorithm for the MDO-CC based on the regularization technique and inexact penalty decomposition. The algorithm is presented such that existing proofs can be extended, under certain assumptions, to show that it converges to stationary points of the original problem and that it converges locally at a superlinear rate. Numerical computation with an engineering design example and several analytical example problems shows promising results with convergence to the all-in-one solution.

1.
Chidambaram
,
B.
, 1992, “
Stackelberg Games in Optimal Design
,” MS thesis, Department of Mechanical Engineering, University of Houston, Houston, TX.
2.
Lewis
,
K.
, and
Mistree
,
F.
, 1997, “
Modeling Interactions in Multidisciplinary Design: A Game Theoretic Approach
,”
AIAA J.
0001-1452,
35
(
8
), pp.
1387
1392
.
3.
Pakala
,
R. R.
, 1994, “
A Study on Applications of Stackelberg Game Strategies in Concurrent Design Models
,” MS thesis, Department of Mechanical Engineering, University of Houston, Houston, TX.
4.
Rao
,
J. R. J.
,
Badhrinath
,
K.
,
Pakala
,
R.
, and
Mistree
,
F.
, 1997, “
A Study of Optimal Design Under Conflict Using Models of Multi-Player Games
,”
Eng. Optimiz.
0305-215X,
28
, pp.
63
94
.
5.
Choi
,
S. C.
,
Desarbo
,
W. S.
, and
Harker
,
P. T.
, 1990, “
Product Positioning Under Price Competition
,”
Manage. Sci.
0025-1909,
36
, pp.
175
199
.
6.
Shiau
,
C. S.
, and
Michalek
,
J. J.
, 2009, “
Optimal Product Design Under Price Competition
,”
ASME J. Mech. Des.
0161-8458,
131
(
7
), p.
071003
.
7.
Lu
,
S.
,
Shanbhag
,
U. V.
, and
Kim
,
H. M.
, 2008, “
Multidisciplinary and Multilevel Design Optimization Problems With Complementarity Constraints
,”
Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
.
8.
Luo
,
Z. -Q.
,
Pang
,
J. -S.
, and
Ralph
,
D.
, 1996,
Mathematical Programs With Equilibrium Constraints
,
Cambridge University Press
,
Cambridge, UK
.
9.
Wallace
,
J.
,
Philpott
,
A.
,
O’Sullivan
,
M.
, and
Ferris
,
M.
, 2006, “
Optimal Rig Design Using Mathematical Programming
,”
Proceedings of the Second High Performance Yacht Design Conference
.
10.
Gu
,
X.
,
Renaud
,
J.
,
Ashe
,
L.
,
Batill
,
S.
,
Budhiraja
,
A.
, and
Krajewski
,
L.
, 2002, “
Decision-Based Collaborative Optimization
,”
ASME J. Mech. Des.
0161-8458,
124
(
1
), pp.
1
13
.
11.
Michalek
,
J.
,
Feinberg
,
F.
, and
Papalambros
,
P.
, 2005, “
Linking Marketing and Engineering Product Design Decisions via Analytical Target Cascading
,”
J. Prod. Innovation Manage.
0737-6782,
22
(
1
), pp.
42
62
.
12.
Wassenaar
,
H. J.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
, 2005, “
Enhancing Discrete Choice Demand Modeling for Decision-Based Design
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
514
523
.
13.
Georgiopoulos
,
P.
,
Jonsson
,
M.
, and
Papalambros
,
P. Y.
, 2005, “
Linking Optimal Design Decisions to the Theory of the Firm: The Case of Resource Allocation
,”
ASME J. Mech. Des.
0161-8458,
127
(
3
), pp.
358
366
.
14.
Rao
,
S. S.
, and
Freiheit
,
T. I.
, 1991, “
A Modified Game Theory Approach to Multiobjective Optimization
,”
ASME J. Mech. Des.
0161-8458,
113
(
3
), pp.
286
291
.
15.
Lewis
,
K.
, and
Mistree
,
F.
, 1998, “
Collaborative, Sequential, and Isolated Decisions in Design
,”
ASME J. Mech. Des.
0161-8458,
120
(
4
), pp.
643
652
.
16.
Hernandez
,
G.
,
Seepersad
,
C. C.
, and
Mistree
,
F.
, 2002, “
Designing for Maintenance: A Game Theoretic Approach
,”
Eng. Optimiz.
0305-215X,
34
(
6
), pp.
561
577
.
17.
Hernandez
,
G.
, and
Mistree
,
F.
, 2000, “
Integrating Product Design and Manufacturing: A Game Theoretic Approach
,”
Eng. Optimiz.
0305-215X,
32
(
6
), pp.
749
775
.
18.
Azarm
,
S.
, and
Li
,
W.
, 1988, “
Optimal Design Using a Two-Level Monotonicity-Based Decomposition
,”
Advances in Design Automation
,
S.
Rao
, ed., Vol.
10
,
ASME
,
New York
, pp.
41
48
.
19.
Sobieszczanski-Sobieski
,
J.
, 1988, “
Optimization by Decomposition: A Step From Hierarchic to Non-Hierarchic Systems
,”
Second NASA Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization
, Paper No. NASA-CP 3031.
20.
Sobieszczanski-Sobieski
,
J.
,
Agte
,
J.
, and
Sandusky
,
R.
, Jr.
, 2000, “
Bilevel Integrated System Synthesis
,”
AIAA J.
0001-1452,
38
(
1
), pp.
164
172
.
21.
Braun
,
R.
, 1996, “
Collaborative Optimization: An Architecture for Large-Scale Distributed Design
,” Ph.D. thesis, Stanford University, Stanford, CA.
22.
Balling
,
R. J.
, and
Gale
,
D. L.
, 1998, “
Collaborative Optimization of Systems Involving Discrete Design at the Discipline Level
,”
ASME J. Mech. Des.
0161-8458,
120
(
1
), pp.
32
39
.
23.
Haftka
,
R.
, and
Watson
,
L.
, 2005, “
Multidisciplinary Design Optimization With Quasiseparable Subsystems
,”
Optim. Eng.
1389-4420,
6
(
1
), pp.
9
20
.
24.
Kim
,
H. M.
, 2001, “
Target Cascading in Optimal System Design
,” Ph.D. thesis, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.
25.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
, 2003, “
Analytical Target Cascading in Automotive Vehicle Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
481
489
.
26.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
474
480
.
27.
DeMiguel
,
V.
, and
Murray
,
W.
, 2006, “
A Local Convergence Analysis of Bilevel Programming Decomposition Algorithms
,”
Optim. Eng.
1389-4420,
7
(
2
), pp.
99
133
.
28.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
, 2007, “
An Augmented Lagrangian Decomposition Method for Quasiseparable Problems in MDO
,”
Struct. Multidiscip. Optim.
1615-147X,
34
(
3
), pp.
211
227
.
29.
Lu
,
S.
,
Kim
,
H. M.
,
Norato
,
J.
, and
Ha
,
C.
, 2008, “
Analytical Target Cascading for Multi-Mode Design Optimization: An Engine Case Study
,”
Proceedings of the Fourth AIAA Multidisciplinary Design Optimization Specialist Conference
.
30.
Nocedal
,
J.
, and
Wright
,
S. J.
, 1999,
Numerical Optimization
,
Springer-Verlag
,
New York
.
31.
Fletcher
,
R.
,
Leyffer
,
S.
,
Ralph
,
D.
, and
Scholtes
,
S.
, 2006, “
Local Convergence of SQP Methods for Mathematical Programs With Equilibrium Constraints
,”
SIAM J. Optim.
1052-6234,
17
(
1
), pp.
259
286
.
32.
Anitescu
,
M.
, 2005, “
On Solving Mathematical Programs With Complementarity Constraints as Nonlinear Programs
,”
SIAM J. Optim.
1052-6234,
15
(
4
), pp.
1203
1236
.
33.
Hu
,
X. M.
, and
Ralph
,
D.
, 2004, “
Convergence of a Penalty Method for Mathematical Programming With Complementarity Constraints
,”
J. Optim. Theory Appl.
0022-3239,
123
(
2
), pp.
365
390
.
34.
Leyffer
,
S.
,
Lopez-Calva
,
G.
, and
Nocedal
,
J.
, 2006, “
Interior Methods for Mathematical Programs With Complementarity Constraints
,”
SIAM J. Optim.
1052-6234,
17
(
1
), pp.
52
77
.
35.
Liu
,
X.
, and
Sun
,
J.
, 2004, “
A New Decomposition Technique in Solving Multistage Stochastic Linear Programs by Infeasible Interior Point Methods
,”
J. Global Optim.
0925-5001,
28
(
4
), pp.
197
215
.
36.
Raghunathan
,
A. U.
, and
Biegler
,
L. T.
, 2005, “
An Interior Point Method for Mathematical Programs With Complementarity Constraints (MPCCs)
,”
SIAM J. Optim.
1052-6234,
15
(
3
), pp.
720
750
.
37.
Shanbhag
,
U. V.
, 2006, “
Decomposition and Sampling Methods for Stochastic Equilibrium Problems
,” Ph.D. thesis, Department of Management Science and Engineering (Operations Research), Stanford University, Stanford, CA.
38.
DeMiguel
,
V.
,
Friedlander
,
M. P.
,
Nogales
,
F. J.
, and
Scholtes
,
S.
, 2005, “
A Two-Sided Relaxation Scheme for Mathematical Programs With Equilibrium Constraints
,”
SIAM J. Optim.
1052-6234,
16
(
2
), pp.
587
609
.
39.
Scholtes
,
S.
, 2001, “
Convergence Properties of a Regularization Scheme for Mathematical Programs With Complementarity Constraints
,”
SIAM J. Optim.
1052-6234,
11
(
4
), pp.
918
936
.
40.
Scheel
,
H.
, and
Scholtes
,
S.
, 2000, “
Mathematical Programs With Complementarity Constraints: Stationarity, Optimality and Sensitivity
,”
Math. Methods Oper. Res.
0209-6137,
25
, pp.
1
22
.
41.
Alexandrov
,
N. M.
, 1997, “
Multilevel Methods for Multidisciplinary Design Optimization
,”
Multidisciplinary Design Optimization
,
N. M.
Alexandrov
and
M. Y.
Hussaini
, eds.,
SIAM
,
Philadelphia, PA
, pp.
79
89
.
42.
Balling
,
R. J.
, and
Sobieszczanski-Sobieski
,
J.
, 1996, “
Optimization of Coupled Systems: A Critical Overview of Approaches
,”
AIAA J.
0001-1452,
34
(
1
), pp.
6
17
.
43.
Fiacco
,
A. V.
, and
McCormick
,
G. P.
, 1968,
Nonlinear Programming: Sequential Unconstrained Minimization Techniques
,
Wiley
,
New York
.
44.
Tosserams
,
S.
,
Etman
,
L. F. P.
,
Papalambros
,
P. Y.
, and
Rooda
,
J. E.
, 2006, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim.
1615-147X,
31
(
3
), pp.
176
189
.
45.
Li
,
Y.
,
Lu
,
Z.
, and
Michalek
,
J.
, 2008, “
Diagonal Quadratic Approximation for Parallelization of Analytical Target Cascading
,”
ASME J. Mech. Des.
0161-8458,
130
(
5
), pp.
1
11
.
46.
Li
,
D. H.
, and
Fukushima
,
M.
, 2001, “
A Modified BFGS Method and Its Global Convergence in Nonconvex Minimization
,”
J. Comput. Appl. Math.
0377-0427,
12
, pp.
15
35
.
47.
Golinski
,
J.
, 1970, “
Optimal Synthesis Problems Solved by Means of Nonlinear Programming and Random Methods
,”
J. Mech.
0022-2569,
5
, pp.
287
309
.
48.
Jiang
,
H.
, and
Ralph
,
D.
, 1999, “
QPECGEN, A MATLAB Generator for Mathematical Programs With Quadratic Objectives and Affine Variational Inequality Constraints, and Its Application to Algorithms
,”
Comput. Optim. Appl.
0926-6003,
13
, pp.
25
29
.
You do not currently have access to this content.