Stabilizing arm mechanisms are used to support and position a load with minimal force from the user. Further, stabilizing arm mechanisms enable operators to stabilize the motion of the load while walking or running over variable terrain. Although existing stabilizing arm mechanisms have reached fairly broad adoption over a range of applications, it remains unknown exactly how the spring properties and geometric parameters of the mechanism enable its overall performance. We developed a simplified model to analyze the vertical dynamics of stabilizing arms to determine how the spring properties and mechanism geometry affect the natural frequency of the load mass, the range of load masses that can be supported, and the equilibrium position of the load mass. We found that decreasing the unstretched spring free length is the most effective way to minimize the natural frequency; the spring lever arm can be used to adjust for a desired load mass range, and the linkage length can be used to adjust the range of motion of the stabilizing arm. The spring stiffness should be selected based on the other parameters. This work provides a systematic design study of how the parameters of a stabilizing arm mechanism affect its behavior and fundamental design principles that could be used to improve existing mechanisms, and enable the design of new mechanisms.

References

1.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
On Zero Stiffness
,”
Proc. Inst. Mech. Eng. Part C
,
228
(
10
), pp.
1701
1714
.
2.
Jurgens
,
J.
,
1978
, “
Steadicam as a Design Problem
,”
SMPTE Motion Imaging J.
,
87
(
9
), pp.
587
591
.
3.
Rahman
,
T.
,
Sample
,
W.
,
Seliktar
,
R.
,
Alexander
,
M.
, and
Scavina
,
M.
,
2000
, “
A Body-Powered Functional Upper Limb Orthosis
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
675
680
.
4.
Rahman
,
T.
,
Sample
,
W.
,
Seliktar
,
R.
,
Scavina
,
M. T.
,
Clark
,
A. L.
,
Moran
,
K.
, and
Alexander
,
M. A.
,
2007
, “
Design and Testing of a Functional Arm Orthosis in Patients With Neuromuscular Diseases
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
2
), pp.
244
251
.
5.
French
,
M. J.
, and
Widden
,
M. B.
,
2000
, “
The Spring-and-Lever Balancing Mechanism, George Carwardine and the Anglepoise Lamp
,”
Proc. Inst. Mech. Eng. Part C
,
214
(
3
), pp.
501
508
.
6.
Equipois,
2013
, “
ZeroG Mechanical Arm
,” http://www.equipoisinc.com/products/zerog4
7.
Rome
,
L. C.
,
Flynn
,
L.
, and
Yoo
,
T. D.
,
2006
, “
Biomechanics: Rubber Bands Reduce the Cost of Carrying Loads
,”
Nature
,
444
(
7122
), pp.
1023
1024
.
8.
Rome
,
L. C.
,
Flynn
,
L.
,
Goldman
,
E. M.
, and
Yoo
,
T. D.
,
2005
, “
Generating Electricity While Walking With Loads
,”
Science
,
309
(
5741
), pp.
1725
1728
.
9.
Kram
,
R.
,
1991
, “
Carrying Loads With Springy Poles
,”
J. Appl. Physiol.
,
71
(
3
), pp.
1119
1122
.
10.
Ackerman
,
J.
, and
Seipel
,
J.
,
2013
, “
Energy Efficiency of Legged Robot Locomotion With Elastically Suspended Loads
,”
IEEE Trans. Robot.
,
29
(
2
), pp.
321
330
.
11.
Foissac
,
M.
,
Millet
,
G. Y.
,
Geyssant
,
A.
,
Freychat
,
P.
, and
Belli
,
A.
,
2009
, “
Characterization of the Mechanical Properties of Backpacks and Their Influence on the Energetics of Walking
,”
J. Biomech.
,
42
(
2
), pp.
125
130
.
12.
Rome
,
L. C.
, and
Ruina
,
A. L.
,
2007
,
Suspended Load Ergonomic Backpack
, U.S. Patent No. 7,931,178.
13.
Ackerman
,
J.
,
Xingye
,
D.
, and
Seipel
,
J.
,
2012
, “
Mobility of Legged Robot Locomotion With Elastically Suspended Loads Over Rough Terrain
,”
15th International Conference on Climbing and Walking Robots
,
CLAWAR 201
,
Baltimore
,
MD
, July 23–26, Vol. 218.
14.
Xingye
,
D.
,
Ackerman
,
J.
, and
Seipel
,
J.
,
2013
, “
Energetic and Dynamic Analysis of Multi-Frequency Legged Robot Locomotion With an Elastically-Suspended Load
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021006
.
15.
Sabanovic
,
A.
, and
Ohnishi
,
K.
,
2011
,
Motion Control Systems
, 1st ed.,
Wiley
,
Singapore
.
16.
Gard
,
S. A.
,
Miff
,
S. C.
, and
Kuo
,
A. D.
,
2004
, “
Comparison of Kinematic and Kinetic Methods for Computing the Vertical Motion of the Body Center of Mass During Walking
,”
Hum. Mov. Sci.
,
22
(
6
), pp.
597
610
.
17.
Hoover
,
J.
, and
Meguid
,
S.
,
2011
, “
Performance Assessment of the Suspended-Load Backpack
,”
Int. J. Mech. Mater. Des.
,
7
(
2
), pp.
111
121
.
18.
Saunders
,
J. B.
,
Inman
,
V. T.
, and
Eberhart
,
H. D.
,
1953
, “
The Major Determinants in Normal and Pathological Gait
,”
J. Bone Jt. Surg.
,
35
(
3
), pp.
543
558
.
19.
2011, “
Century Spring Online Catalog
,”Last accessed Dec. 4,
2014
, http://www.centuryspring.com/Store/search_extension.php
20.
Shigley
,
J.
,
Mischke
,
C.
, and
Budynas
,
R.
,
2004
,
Shigley’s Mechanical Engineering Design
, 7th ed.,
McGraw-Hill Science/Engineering/Math
,
New York
.
21.
Holway
,
J.
, and
Hayball
,
L.
,
2011
,
Steadicam Scout Operating Manual
,
The Tiffen Company
,
Hauppauge, NY
.
You do not currently have access to this content.