In this paper, we present the design and development of a portable, hand-operated composite compliant mechanism for estimating the failure-load of cm-sized stiff objects whose stiffness is of the order of 10 s of kN/m. The motivation for the design comes from the need to estimate the failure-load of mesoscale cemented sand specimens in situ, which is not possible with traditional devices used for large specimens or very small specimens. The composite compliant device, developed in this work, consists of two compliant mechanisms: a force-amplifying compliant mechanism (FaCM) to amplify sufficiently the force exerted by hand in order to break the specimen and a displacement-amplifying compliant mechanism (DaCM) to enable measurement of the force using a proximity sensor. The two mechanisms are designed using the selection-maps technique to amplify the force up to 100 N by about a factor of 3 and measure the force with a resolution of 15 mN. The composite device, made using a FaCM, a DaCM, and a Hall effect-based proximity sensor, was tested on mesoscale cemented sand specimens that were 10 mm in diameter and 20 mm in length. The results are compared with those of a large commercial instrument. Through the experiments, it was observed that the failure-load of the cemented sand specimens varied from 0.95 N to 24.33 N, depending on the percentage of cementation and curing period. The estimation of the failure-load using the compliant device was found to be within 1.7% of the measurements obtained using the commercial instrument and thus validating the design. The details of the design, prototyping, specimen preparation, testing, and the results comprise the paper.

References

1.
ASTM D698, 2007, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, ASTM, West Conshohocken, PA.
2.
Reddy
,
K. R.
, and
Saxena
,
S. K.
,
1992
, “
Constitutive Modeling of Cemented Sand
,”
Mech. Mater.
,
14
(
2
), pp.
155
178
.10.1016/0167-6636(92)90012-3
3.
Lagioia
,
R.
, and
Nova
,
R.
,
1993
, “
A Constitutive Model for Soft Rocks
,”
International Conference on the Geotechnical Engineering of Hard Soils-Soft Rocks
, pp.
625
632
.
4.
Jiang
,
M. J.
,
Yan
,
H. B.
,
Zhu
,
H. H.
, and
Utili
,
S.
,
2011
, “
Modeling Shear Behavior and Strain Localization in Cemented Sands by Two-Dimensional Distinct Element Method Analyses
,”
Comput. Geotech.
,
38
(
1
), pp.
14
29
.10.1016/j.compgeo.2010.09.001
5.
Vatsala
,
A.
,
Nova
,
R.
, and
Murthy
,
B. R. S.
,
2001
, “
Elastoplastic Model for Cemented Soils
,”
J. Geotech. Geoenviron. Eng.
,
127
(
8
), pp.
679
687
.10.1061/(ASCE)1090-0241(2001)127:8(679)
6.
O‘Sullivan
,
C.
,
2010
,
Particulate Discrete Element Modeling: A Geomechanics Perspective
,
Taylor and Francis
, London, UK.
7.
Jiang
,
M.
,
Zhang
,
W.
,
Sun
,
Y.
, and
Utili
,
S.
,
2013
, “
An Investigation on Loose Cemented Granular Materials Via DEM Analyses
,”
Granular Matter
,
15
(
1
), pp.
65
84
.10.1007/s10035-012-0382-8
8.
Clough
,
G. W.
,
Sitar
,
N.
, and
Bachus
,
R. C.
,
1981
, “
Cemented Sand Under Static Loading
,”
J. Geotech. Eng. Div., ASCE
,
107
(
6
), pp.
799
817
.
9.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
10.
Kota
,
S.
,
Hetrick
,
J.
,
Li
,
Z.
, and
Saggere
,
L.
,
1999
, “
Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications
,”
IEEE/ASME Trans. Mechatronics
,
4
(
4
), pp.
396
408
.10.1109/3516.809518
11.
Jonsmann
,
J.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
,
1999
, “
Compliant Electro-Thermal Microactuators
,”
12th IEEE International Conference on Micro Electro Mechanical Systems
, MEMS'99, pp.
588
593
.
12.
Krishnan
,
G.
, and
Ananthasuresh
,
G. K.
,
2008
, “
Evaluation and Design of Displacement-Amplifying Compliant Mechanisms for Sensor Applications
,”
ASME J. Mech. Des.
,
130
(
10
), p.
102304
.10.1115/1.2965599
13.
Khan
,
S.
, and
Ananthasuresh
,
G. K.
, “
Improving the Sensitivity and Bandwidth of In-Plane Capacitive Microaccelerometers Using Compliant Mechanical Amplifiers
,”
J. Microelectromech. Syst.
,
23
(
4
), pp.
871
887
.10.1109/JMEMS.2014.2300231
14.
Reddy
,
A. N.
,
Maheshwari
,
N.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G. K.
,
2010
, “
Miniature Compliant Grippers With Vision-Based Force Sensing
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
867
877
.10.1109/TRO.2010.2056210
15.
Frecker
,
M.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.10.1115/1.2826242
16.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
,
25
(
4
), pp.
495
526
.10.1080/08905459708945415
17.
Deepak
,
S. R.
,
Dinesh
,
M.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G. K.
,
2009
, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011003
.10.1115/1.2959094
18.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
,
2003
, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
253
261
.10.1115/1.1563634
19.
Zhou
,
H.
, and
Ting
,
K.-L.
,
2005
, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
551
558
.
20.
Kim
,
C. J.
,
Yong-Mo
,
M.
, and
Sridhar
,
K.
,
2008
, “
A Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022308
.10.1115/1.2821387
21.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.10.1115/1.2919359
22.
Beroz
,
J.
,
Awtar
,
S.
, and
Hart
,
A. J.
,
2014
, “
Extensible-Link Kinematic Model for Characterizing and Optimizing Compliant Mechanism Motion
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031008
.10.1115/1.4026269
23.
Luzhong
,
Y.
, and
Ananthasuresh
,
G. K.
,
2003
, “
Design of Distributed Compliant Mechanisms
,”
Mech. Des. Struct. Mach.
,
31
(
2
), pp.
151
179
.
24.
Naik
,
S. V.
,
Saxena
,
A.
, and
Rai
,
A. K.
,
2010
, “
On the Criteria for Choice of the Best Solution From a Generated Set of Partially Compliant Linkages
,”
ASME
Paper No. DETC2010-29137.10.1115/DETC2010-29137
25.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
,
2004
, “
Topology Optimization for Synthesis of Contact-Aided Compliant Mechanisms Using Regularized Contact Modeling
,”
Comput. Struct.
,
82
(
15
), pp.
1267
1290
.10.1016/j.compstruc.2004.02.024
26.
Jacobsen
,
J. O.
,
Winder
,
B. G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011003
.10.1115/1.4000523
27.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
,
19
(
1
), pp.
36
49
.10.1007/s001580050084
28.
Hegde
,
S.
,
2012
, “
Pragmatic Design of Compliant Mechanisms Using Selection Maps
,” Ph.D. thesis, Indian Institute of Science, Bangalore.
29.
Hegde
,
S.
, and
Ananthasuresh
,
G. K.
,
2010
, “
Design of Single-Input-Single-Output Compliant Mechanisms for Practical Applications Using Selection Maps
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081007
.10.1115/1.4001877
30.
Baichapur
,
G. S.
,
Gugale
,
H.
,
Maheshwari
,
A.
,
Bhargav
,
S. D. B.
, and
Ananthasuresh
,
G. K.
,
2014
, “
A Vision-Based Micro-Newton Static Force Sensor Using a Displacement-Amplifying Compliant Mechanism
,”
Mech. Des. Struct. Mach.
,
42
(
2
), pp.
193
210
.10.1080/15397734.2013.864938
31.
Kandasami
,
R. K.
, and
Murthy
,
T. G.
,
2013
, “
Experimental Studies on the Mechanics of Cohesive Frictional Granular Media
,”
Powders Grains
,
1542
(1), pp.
987
990
.
32.
Datasheet, 2005, A1391, A1392, A1393, and A1395: Micro Power 3 V Linear Hall-Effect Sensor ICs With Tri-State Output and User-Selectable Sleep Mode, Allegro Microsystems, Incorporation, Philippines.
33.
Ramsden
,
E.
,
2011
,
Hall Effect Sensors: Theory and Application
,
Newnes
,
Burlington, MA
.
You do not currently have access to this content.