Abstract

In the era of digitalization, manufacturing companies expect their growing access to data to lead to improvements and innovations. Manufacturing engineers will have to collaborate with data scientists to analyze the ever-increasing volume of data. This process of adopting data science techniques into an engineering organization is a sociotechnical process fraught with challenges. This article uses a participant observation case study to investigate and discuss the sociotechnical nature of the adoption data science technology into an engineering organization. In the case study, a young data scientist/statistician interacted with experienced production engineers in a global automotive organization to mutual satisfaction. However, the case study highlights the mis-aligned expectations between engineers and data scientists and knowledge in what is necessary to successfully benefit from manufacturing process data.

The results reveal that the engineers had an initially romantic and idealistic view on how data scientists can bring value out of dispersed and complex information residing in the multisite manufacturing organization’s datasets in a “magic” way. Conversely, the data scientist had not enough engineering and contextual understanding to ask the right questions. The case reveals important shortcomings in the sociotechnical processes that undergo changes as digitalization is brought into mature engineering organizations and points to a lack of knowledge on multiple levels of the data analysis process and the ethical implications this could have.

References

References
1.
Yeats
,
W. B.
,
1903
,
The Land of Heart's Desire
(
The Project Gutenberg EBook
), http://www.gutenberg.org/files/15153/15153-h/15153-h.htm
3.
De Weck
,
O. L.
,
Roos
,
D.
, and
Magee
,
C. L.
,
2011
,
Engineering Systems: Meeting Human Needs in a Complex Technological World
,
Mit Press
,
Cambridge, MA
.
4.
Womack
,
J. P.
,
Jones
,
D. T.
, and
Roos
,
D.
,
2007
,
The Machine That Changed the World: The Story of Lean Production—Toyota's Secret Weapon in the Global Car Wars That Is Now Revolutionizing World Industry
,
Simon and Schuster
,
New York
.
5.
Schroeder
,
R. G.
,
Linderman
,
K.
,
Liedtke
,
C.
, and
Choo
,
A. S.
,
2008
, “
Six Sigma: Definition and Underlying Theory
,”
J. Oper. Manage.
,
26
(
4
), pp.
536
554
. 10.1016/j.jom.2007.06.007
6.
Ustundag
,
A.
, and
Cevikcan
,
E.
,
2018
,
Industry 4.0: Managing the Digital Transformation
,
Springer Series in Advanced Manufacturing
.
7.
Varshney
,
L. R.
,
2016
, “
Fundamental Limits of Data Analytics in Sociotechnical Systems
,”
Front. ICT
,
3
, p.
2
. 10.3389/fict.2016.00002
8.
EU
,
2020
,
Shaping Europe’s Digital Future
,
Publications Office of the European Union
,
Luxembourg
.
9.
Elish
,
M. C.
, and
Boyd
,
D.
,
2018
, “
Situating Methods in the Magic of Big Data and AI
,”
Commun. Monogr.
,
85
(
1
), pp.
57
80
. 10.1080/03637751.2017.1375130
10.
Goode
,
L.
,
2018
, “
Life, but Not as We Know It: AI and the Popular Imagination
,”
Culture Unbound: J. Curr. Cultural Res.
,
10
(
2
), pp.
185
207
. 10.3384/cu.2000.1525.2018102185
12.
Fenn
,
J.
, and
Raskino
,
M.
,
2008
,
Mastering the Hype Cycle: How to Choose the Right Innovation at the Right Time
,
Harvard Business Press
,
Boston, MA
.
13.
Dosi
,
G.
,
1982
, “
Technological Paradigms and Technological Trajectories
,”
Res. Policy
,
11
(
3
), pp.
147
162
. 10.1016/0048-7333(82)90016-6
14.
Steinert
,
M.
, and
Leifer
,
L.
,
2010
, “
Scrutinizing Gartner's Hype Cycle Approach
,”
Proceedings of Picmet 2010 Technology Management for Global Economic Growth
,
Phuket, Thailand
,
July 18–22
, IEEE, pp.
1
13
.
15.
Domingos
,
P.
,
2012
, “
A Few Useful Things to Know About Machine Learning
,”
Commun. ACM
,
55
(
10
), pp.
78
87
. 10.1145/2347736.2347755
16.
Eckert
,
C.
,
Isaksson
,
O.
,
Hallstedt
,
S.
,
Malmqvist
,
J.
,
Rönnbäck
,
, and
Panarotto
,
M.
,
2019
, “
Industry Trends to 2040
,”
Proceedings of the Design Society: International Conference on Engineering Design
,
Delft, The Netherlands
,
Aug. 5–8
, Cambridge University Press, pp.
2121
2128
.
17.
Gartner
,
2019
, “
Gartner Top 10 Data and Analytics Trends
,” https://www.gartner.com/smarterwithgartner/gartner-top-10-data-analytics-trends/
18.
Bucciarelli
,
L. L.
,
1994
,
Designing Engineers
,
MIT Press
,
Cambridge, MA
.
19.
Star
,
S. L.
,
2010
, “
This is Not a Boundary Object: Reflections on the Origin of a Concept
,”
Sci. Technol. Hum. Values
,
35
(
5
), pp.
601
617
. 10.1177/0162243910377624
20.
Stacey
,
M.
, and
Eckert
,
C.
,
2003
, “
Against Ambiguity
,”
Comput. Supported Coop. Work
,
12
(
2
), pp.
153
183
. 10.1023/A:1023924110279
21.
Tushman
,
M.
,
Tushman
,
M. L.
, and
O'Reilly
,
C. A.
,
2002
,
Winning Through Innovation: A Practical Guide to Leading Organizational Change and Renewal
,
Harvard Business Press
,
Boston, MA
.
22.
Liker
,
J. K.
,
1997
,
Becoming Lean: Inside Stories of US Manufacturers
,
CRC Press
,
Boca Raton, FL
.
23.
Pande
,
P. S.
, and
Holpp
,
L.
,
2001
,
What is Six Sigma?
McGraw-Hill Professional
,
New York
.
24.
Söderberg
,
R.
,
Wärmefjord
,
K.
,
Carlson
,
J. S.
, and
Lindkvist
,
L.
,
2017
, “
Toward a Digital Twin for Real-Time Geometry Assurance in Individualized Production
,”
CIRP Ann.
,
66
(
1
), pp.
137
140
. 10.1016/j.cirp.2017.04.038
25.
Davis
,
R.
,
2015
, “
Industry 4.0. Digitalisation for Productivity and Growth
,”
European Parliament Briefing September 2015
,
European Parliamentary Research Service
.
26.
European Union
,
2018
,
Digital Transformation Scoreboard 2018
,
Publications Office of the European Union
,
Luxembourg
.
27.
Soban
,
D.
,
Thornhill
,
D.
,
Salunkhe
,
S.
, and
Long
,
A.
,
2016
, “
Visual Analytics as an Enabler for Manufacturing Process Decision-Making
,”
Procedia CIRP
,
56
, pp.
209
214
. 10.1016/j.procir.2016.10.056
28.
Benson
,
P. R.
,
2019
, “
ISO 8000 Quality Data Principles
,”
An ECCMA White Paper
,
ECCMA
.
29.
Moldoveanu
,
M.
,
2015
, “
Unpacking the ‘Big Data’ Skill Set
,”
European Business Review
.
30.
Rose
,
D.
,
2016
,
Data Science: Create Teams That Ask the Right Questions and Deliver Real Value
,
Apress
.
31.
Baškarada
,
S.
, and
Koronios
,
A.
,
2017
, “
Unicorn Data Scientist: The Rarest of Breeds
,”
Program.
10.1108/prog-07-2016-0053
32.
Attwood
,
T. K.
,
Blackford
,
S.
,
Brazas
,
M. D.
,
Davies
,
A.
, and
Schneider
,
M. V.
,
2019
, “
A Global Perspective on Evolving Bioinformatics and Data Science Training Needs
,”
Briefings Bioinf.
,
20
(
2
), pp.
398
404
. 10.1093/bib/bbx100
33.
Saltz
,
J. S.
, and
Grady
,
N. W.
,
2017
, “
The Ambiguity of Data Science Team Roles and the Need for a Data Science Workforce Framework
,”
2017 IEEE International Conference on Big Data (Big Data)
,
Boston, MA
,
Dec. 11–14
, IEEE, pp.
2355
2361
.
34.
Gregory
,
K. M.
,
Cousijn
,
H.
,
Groth
,
P.
,
Scharnhorst
,
A.
, and
Wyatt
,
S.
,
2019
, “
Understanding Data Search as a Socio-Technical Practice
,”
J. Inf. Sci.
,
46
(
4
), pp.
459
475
. 10.1177/0165551519837182
35.
Gal
,
I.
,
2002
, “
Adults’ Statistical Literacy: Meanings, Components, Responsibilities
,”
Int. Stat. Rev.
,
70
(
1
), pp.
1
25
. 10.1111/j.1751-5823.2002.tb00336.x
36.
Wallman
,
K. K.
,
1993
, “
Enhancing Statistical Literacy: Enriching Our Society
,”
J. Am. Stat. Assoc.
,
88
(
421
), pp.
1
8
. 10.2307/2290686
37.
Watson
,
J. M.
,
2006
, “
Issues for Statistical Literacy in the Middle School
,”
ICOTS-7 Conference Proceedings
,
Salvador, Bahia, Brazil
,
July 2–7
.
38.
Kaplan
,
J.
, and
Rogness
,
N.
,
2018
, “
Increasing Statistical Literacy by Exploiting Lexical Ambiguity of Technical Terms
,”
Numeracy Adv. Educ. Quant. Literacy
,
11
(
1
), pp.
1
14
. 10.5038/1936-4660.11.1.3
39.
Watson
,
J. M.
, and
Kelly
,
B. A.
,
2008
, “
Sample, Random and Variation: The Vocabulary of Statistical Literacy
,”
Int. J. Sci. Math. Edu.
,
6
(
4
), pp.
741
767
. 10.1007/s10763-007-9083-x
40.
Malinowski
,
B.
,
1929
,
The Sexual Life of Savages in North-Western Melanesia
,
Halcyon House
,
New York
.
41.
Mead
,
M.
,
1928
,
Coming of Age in Samoa: A Psychological Study of Primitive Youth for Western Civilisation
,
William Morrow & Co
,
New York
.
42.
Hickey
,
S.
, and
Mohan
,
G.
,
2004
, eds.
Participation: From Tyranny to Transformation? Exploring New Approaches to Participation in Development
,
Zed Books
,
London
.
43.
Clark
,
A.
,
Holland
,
C.
,
Katz
,
J.
, and
Peace
,
S.
,
2009
, “
Learning to See: Lessons From a Participatory Observation Research Project in Public Spaces
,”
Int. J. Soc. Res. Methodol.
,
12
(
4
), pp.
345
330
. 10.1080/13645570802268587
44.
Agar
,
M.
,
1980
,
The Professional Stranger: An Informal Introduction to Ethnography
,
Academic Press
,
London
.
45.
Atkinson
,
P.
, and
Hammersley
,
M.
,
1994
, “Ethnography and Participant Observation,”
Handbook of Qualitative Research
,
NK
Denzin
, and
YS
Lincoln
, eds.,
Sage
,
Thousand Oaks, CA
.
46.
O'Neil
,
C.
,
2016
,
Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy
,
The Crown Publishing Group
,
New York
.
47.
Bailer-Jones
,
D. M.
,
2009
,
Scientific Models in Philosophy of Science
,
University of Pittsburgh Press
,
Pittsburgh, PA
.
48.
Giere
,
R. N.
,
1988
,
Explaining Science: A Cognitive Approach
,
University of Chicago Press
,
Chicago, IL
.
49.
Fahrmeir
,
L.
,
Kneib
,
T.
,
Lang
,
S.
, and
Marx
,
B.
,
2007
,
Regression
,
Springer-Verlag
,
Berlin, Heidelberg
.
50.
Eckert
,
C.
, and
Hillerbrand
,
R.
,
2018
, “Models in Engineering Design: Generative and Epistemic Function of Product Models,”
Advancements in the Philosophy of Design. Design Research Foundations
,
P.
Vermaas
, and
S.
Vial
, eds.,
Springer
,
Cham, Switzerland
, pp.
219
242
.
51.
Vajna
,
S.
,
Weber
,
C.
,
Zeman
,
K.
,
Hehenberger
,
P.
,
Gerhard
,
D.
, and
Wartzack
,
S.
,
2018
,
CAX für Ingenieure
,
Springer Vieweg
,
Berlin, Heidelberg
, pp.
515
547
.
52.
Bowker
,
G.
, and
Star
,
L.
,
2000
,
Sorting Things Out: Classification and Its Consequences
,
MIT Press
,
Cambridge, MA
.
53.
Rahm
,
E.
, and
Do
,
H. H.
,
2000
, “
Data Cleaning: Problems and Current Approaches
,”
IEEE Data Eng. Bull.
,
23
(
4
), pp.
3
13
.
54.
Clarke
,
A. C.
,
1973
,
Profiles of the Future: An Enquiry Into the Limits of the Possible
,
Harper & Row
,
New York
.
55.
Gell
,
A.
,
1994
, “The Technology of Enchantment and the Enchantment of Technology,”
Anthropology, Art, and Aesthetics
,
J.
Coote
, ed.,
Clarendon Press
,
Oxford
.
56.
Coeckelbergh
,
M.
,
2017
,
New Romantic Cyborgs: Romanticism, Information Technology, and the End of the Machine
,
The MIT Press
,
Cambridge, MA/London
.
57.
Coeckelbergh
,
M.
,
2018
, “
How to Describe and Evaluate “Deception” Phenomena: Recasting the Metaphysics, Ethics, and Politics of ICTs in Terms of Magic and Performance and Taking a Relational and Narrative Turn
,”
Ethics Inf. Technol.
,
20
(
2
), pp.
71
85
. 10.1007/s10676-017-9441-5
58.
Coeckelbergh
,
M.
,
2019
,
Moved by Machines
,
Routledge
,
New York
.
59.
Hagendorff
,
T.
, and
Wezel
,
K.
,
2019
, “
15 Challenges for AI: or What AI (Currently) Can’t do
,”
AI & Soc.
10.1007/s00146-019-00886-y
You do not currently have access to this content.