Abstract

Conventional topology optimization presentations generally highlight the numerical and optimization details established on the specially customized discrete geometric modeling system, which is incompatible with the existing computer-aided design (CAD)/computer-aided engineering (CAE) systems. Therefore, tedious preprocessing and postprocessing are required to improve the editability and manufacturability, which are both time consuming and labor intensive. Hence, to address this challenging issue, a novel CAD-based topology optimization system is developed in this work. The following points are highlighted: (i) interoperability issue between CAD and topology optimization was addressed by using macro files to communicate the feature and modeling history information; then, (ii) structural shape and topology optimization is performed based on a B-spline-based approach, which inherits the original spline information from the upstream CAD model and of course, can return spline-based geometric information for optimized CAD model generation, and the last but the most important point to mention is that, (iii) modeling history was incorporated into the optimization process and dynamic modeling history change is enabled based on the optimality criteria. This final point is significant because history-based CAD modeling is still a main-stream approach, especially given the excellent postmodeling editability and design intent capture.

References

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
. 10.1016/0045-7825(88)90086-2
2.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Berlin
.
3.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Stress-Related Topology Optimization of Continuum Structures Involving Multi-Phase Materials
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
632
655
. 10.1016/j.cma.2013.10.003
4.
Mirzendehdel
,
A. M.
, and
Suresh
,
K.
,
2015
, “
A Pareto-Optimal Approach to Multimaterial Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101701
. 10.1115/1.4031088
5.
Vogiatzis
,
P.
,
Chen
,
S.
,
Wang
,
X.
,
Li
,
T.
, and
Wang
,
L.
,
2017
, “
Topology Optimization of Multi-Material Negative Poisson’s Ratio Metamaterials Using a Reconciled Level Set Method
,”
Comput. Aided Des.
,
83
, pp.
15
32
. 10.1016/j.cad.2016.09.009
6.
Liu
,
J.
, and
Ma
,
Y.
,
2018
, “
A New Multi-Material Level Set Topology Optimization Method With the Length Scale Control Capability
,”
Comput. Methods Appl. Mech. Eng.
,
329
, pp.
444
463
. 10.1016/j.cma.2017.10.011
7.
Yang
,
X.
, and
Li
,
M.
,
2018
, “
Discrete Multi-Material Topology Optimization Under Total Mass Constraint
,”
Comput. Aided Des.
,
102
, pp.
182
192
. 10.1016/j.cad.2018.04.023
8.
Zhang
,
W.
,
Song
,
J.
,
Zhou
,
J.
,
Du
,
Z.
,
Zhu
,
Y.
,
Sun
,
Z.
, and
Guo
,
X.
,
2018
, “
Topology Optimization With Multiple Materials via Moving Morphable Component (MMC) Method
,”
Int. J. Numer. Methods Eng.
,
113
(
11
), pp.
1653
1675
. 10.1002/nme.5714
9.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J. A.
,
2018
, “
Topology Optimization of Structures Made of Discrete Geometric Components With Different Materials
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111401
. 10.1115/1.4040624
10.
Wang
,
Y.
, and
Kang
,
Z.
,
2017
, “
Structural Shape and Topology Optimization of Cast Parts Using Level Set Method
,”
Int. J. Numer. Methods Eng.
,
111
(
13
), pp.
1252
1273
. 10.1002/nme.5503
11.
Li
,
Q.
,
Chen
,
W.
,
Liu
,
S.
, and
Fan
,
H.
,
2018
, “
Topology Optimization Design of Cast Parts Based on Virtual Temperature Method
,”
Comput. Aided Des.
,
94
, pp.
28
40
. 10.1016/j.cad.2017.08.002
12.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
. 10.1115/1.4030989
13.
Maute
,
K.
,
Tkachuk
,
A.
,
Wu
,
J.
,
Jerry Qi
,
H.
,
Ding
,
Z.
, and
Dunn
,
M. L.
,
2015
, “
Level Set Topology Optimization of Printed Active Composites
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111402
. 10.1115/1.4030994
14.
Liu
,
J.
,
Zheng
,
Y.
,
Ma
,
Y.
,
Qureshi
,
A.
, and
Ahmad
,
R.
,
2019
, “
A Topology Optimization Method for Hybrid Subtractive–Additive Remanufacturing
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
6
(
26
), pp.
1
15
. 10.1007/s40684-019-00075-8
15.
Gaynor
,
A. T.
, and
Guest
,
J. K.
,
2016
, “
Topology Optimization Considering Overhang Constraints: Eliminating Sacrificial Support Material in Additive Manufacturing Through Design
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1157
1172
. 10.1007/s00158-016-1551-x
16.
Mirzendehdel
,
A. M.
, and
Suresh
,
K.
,
2016
, “
Support Structure Constrained Topology Optimization for Additive Manufacturing
,”
Comput. Aided Des.
,
81
, pp.
1
13
. 10.1016/j.cad.2016.08.006
17.
Liu
,
J.
, and
To
,
A. C.
,
2017
, “
Deposition Path Planning-Integrated Structural Topology Optimization for 3D Additive Manufacturing Subject to Self-Support Constraint
,”
Comput. Aided Des.
,
91
, pp.
27
45
.10.1016/j.cad.2017.05.003
18.
Guo
,
X.
,
Zhou
,
J.
,
Zhang
,
W.
,
Du
,
Z.
,
Liu
,
C.
, and
Liu
,
Y.
,
2017
, “
Self-supporting Structure Design in Additive Manufacturing Through Explicit Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
323
, pp.
27
63
. 10.1016/j.cma.2017.05.003
19.
Orme
,
M. E.
,
Gschweitl
,
M.
,
Ferrari
,
M.
,
Madera
,
I.
, and
Mouriaux
,
F.
,
2017
, “
Designing for Additive Manufacturing: Lightweighting Through Topology Optimization Enables Lunar Spacecraft
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100905
. 10.1115/1.4037304
20.
Geiss
,
M. J.
,
Boddeti
,
N.
,
Weeger
,
O.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2018
, “
Combined Level-Set-XFEM-Density Topology Optimization of 4D Printed Structures Undergoing Large Deformation
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051405
. 10.1115/1.4041945
21.
Liu
,
J.
,
Zheng
,
Y.
,
Ahmad
,
R.
,
Tang
,
J.
, and
Ma
,
Y.
,
2019
, “
Minimum Length Scale Constraints in Multi-Scale Topology Optimisation for Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
14
(
3
), pp.
229
241
. 10.1080/17452759.2019.1584944
22.
Yu
,
H.
,
Huang
,
J.
,
Zou
,
B.
,
Shao
,
W.
, and
Liu
,
J.
,
2019
, “
Stress-Constrained Shell-Lattice Infill Structural Optimization for Additive Manufacturing
,”
Virtual Phys. Prototyp.
, 10.1080/17452759.2019.1647488
23.
Chen
,
S.
,
Chen
,
W.
, and
Lee
,
S.
,
2010
, “
Level Set Based Robust Shape and Topology Optimization Under Random Field Uncertainties
,”
Struct. Multidiscip. Optim.
,
41
(
4
), pp.
507
524
. 10.1007/s00158-009-0449-2
24.
Chen
,
S.
, and
Chen
,
W.
,
2011
, “
A New Level-Set Based Approach to Shape and Topology Optimization Under Geometric Uncertainty
,”
Struct. Multidiscip. Optim.
,
44
(
1
), pp.
1
18
. 10.1007/s00158-011-0660-9
25.
Guo
,
X.
,
Zhang
,
W.
, and
Zhang
,
L.
,
2013
, “
Robust Structural Topology Optimization Considering Boundary Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
253
, pp.
356
368
. 10.1016/j.cma.2012.09.005
26.
Guo
,
X.
,
Zhao
,
X.
,
Zhang
,
W.
,
Yan
,
J.
, and
Sun
,
G.
,
2015
, “
Multi-Scale Robust Design and Optimization Considering Load Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
994
1009
. 10.1016/j.cma.2014.10.014
27.
Ha
,
S.-H.
,
Lee
,
H. Y.
,
Hemker
,
K.
, and
Guest
,
J. K.
,
2018
, “
Topology Optimization of 3D Woven Materials Using a Ground Structure Design Variable Representation
,”
ASME J. Mech. Des.
,
141
(
6
), p.
061403
. 10.1115/1.4042114
28.
Zhang
,
W.
,
Liu
,
Y.
,
Du
,
Z.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2018
, “
A Moving Morphable Component Based Topology Optimization Approach for Rib-Stiffened Structures Considering Buckling Constraints
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111404
. 10.1115/1.4041052
29.
Bremicker
,
M.
,
Chirehdast
,
M.
,
Kikuchi
,
N.
, and
Papalambros
,
P. Y.
,
1991
, “
Integrated Topology and Shape Optimization in Structural Design*
,”
Mech. Struct. Mach.
,
19
(
4
), pp.
551
587
. 10.1080/08905459108905156
30.
Lin
,
C.-Y.
, and
Chao
,
L.-S.
,
2000
, “
Automated Image Interpretation for Integrated Topology and Shape Optimization
,”
Struct. Multidiscip. Optim.
,
20
(
2
), pp.
125
137
. 10.1007/s001580050144
31.
Yildiz
,
A. R.
,
Öztürk
,
N.
,
Kaya
,
N.
, and
Öztürk
,
F.
,
2003
, “
Integrated Optimal Topology Design and Shape Optimization Using Neural Networks
,”
Struct. Multidiscip. Optim.
,
25
(
4
), pp.
251
260
. 10.1007/s00158-003-0300-0
32.
Maute
,
K.
, and
Ramm
,
E.
,
1995
, “
Adaptive Topology Optimization
,”
Struct. Optim.
,
10
(
2
), pp.
100
112
. 10.1007/BF01743537
33.
Youn
,
S.-K.
, and
Park
,
S.-H.
,
1997
, “
A Study on the Shape Extraction Process in the Structural Topology Optimization Using Homogenized Material
,”
Comput. Struct.
,
62
(
3
), pp.
527
538
. 10.1016/S0045-7949(96)00217-9
34.
Hsu
,
M.-H.
, and
Hsu
,
Y.-L.
,
2005
, “
Interpreting Three-Dimensional Structural Topology Optimization Results
,”
Comput. Struct.
,
83
(
4–5
), pp.
327
337
. 10.1016/j.compstruc.2004.09.005
35.
Hsu
,
Y.-L.
,
Hsu
,
M.-S.
, and
Chen
,
C.-T.
,
2001
, “
Interpreting Results From Topology Optimization Using Density Contours
,”
Comput. Struct.
,
79
(
10
), pp.
1049
1058
. 10.1016/S0045-7949(00)00194-2
36.
Koguchi
,
A.
, and
Kikuchi
,
N.
,
2006
, “
A Surface Reconstruction Algorithm for Topology Optimization
,”
Eng. Comput.
,
22
(
1
), pp.
1
10
. 10.1007/s00366-006-0023-0
37.
Chang
,
K.-H.
, and
Tang
,
P.-S.
,
2001
, “
Integration of Design and Manufacturing for Structural Shape Optimization
,”
Adv. Eng. Softw.
,
32
(
7
), pp.
555
567
. 10.1016/S0965-9978(00)00103-4
38.
Liu
,
J.
, and
Ma
,
Y.
,
2016
, “
A Survey of Manufacturing Oriented Topology Optimization Methods
,”
Adv. Eng. Softw.
,
100
, pp.
161
175
. 10.1016/j.advengsoft.2016.07.017
39.
Cervera
,
E.
, and
Trevelyan
,
J.
,
2005
, “
Evolutionary Structural Optimisation Based on Boundary Representation of NURBS. Part I: 2D Algorithms
,”
Comput. Struct.
,
83
(
23–24
), pp.
1902
1916
. 10.1016/j.compstruc.2005.02.016
40.
Cervera
,
E.
, and
Trevelyan
,
J.
,
2005
, “
Evolutionary Structural Optimisation Based on Boundary Representation of NURBS. Part II: 3D Algorithms
,”
Comput. Struct.
,
83
(
23–24
), pp.
1917
1929
. 10.1016/j.compstruc.2005.02.017
41.
Zhang
,
W.
,
Yang
,
W.
,
Zhou
,
J.
,
Li
,
D.
, and
Guo
,
X.
,
2016
, “
Structural Topology Optimization Through Explicit Boundary Evolution
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011011
. 10.1115/1.4034972
42.
Zhang
,
W.
,
Chen
,
J.
,
Zhu
,
X.
,
Zhou
,
J.
,
Xue
,
D.
,
Lei
,
X.
, and
Guo
,
X.
,
2017
, “
Explicit Three Dimensional Topology Optimization via Moving Morphable Void (MMV) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
322
, pp.
590
614
. 10.1016/j.cma.2017.05.002
43.
Zhang
,
W.
,
Zhao
,
L.
,
Gao
,
T.
, and
Cai
,
S.
,
2017
, “
Topology Optimization With Closed B-Splines and Boolean Operations
,”
Comput. Methods Appl. Mech. Eng.
,
315
, pp.
652
670
. 10.1016/j.cma.2016.11.015
44.
Zhang
,
W.
,
Zhao
,
L.
, and
Gao
,
T.
,
2017
, “
CBS-Based Topology Optimization Including Design-Dependent Body Loads
,”
Comput. Methods Appl. Mech. Eng.
,
322
, pp.
1
22
. 10.1016/j.cma.2017.04.021
45.
Zhang
,
W.
,
Li
,
D.
,
Zhou
,
J.
,
Du
,
Z.
,
Li
,
B.
, and
Guo
,
X.
,
2018
, “
A Moving Morphable Void (MMV)-Based Explicit Approach for Topology Optimization Considering Stress Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
334
, pp.
381
413
. 10.1016/j.cma.2018.01.050
46.
Liu
,
J.
,
Gaynor
,
A. T.
,
Chen
,
S.
,
Kang
,
Z.
,
Suresh
,
K.
,
Takezawa
,
A.
,
Li
,
L.
,
Kato
,
J.
,
Tang
,
J.
,
Wang
,
C. C. L.
,
Cheng
,
L.
,
Liang
,
X.
, and
To
,
A. C.
,
2018
, “
Current and Future Trends in Topology Optimization for Additive Manufacturing
,”
Struct. Multidiscip. Optim.
,
57
(
6
), pp.
2457
2483
. 10.1007/s00158-018-1994-3
47.
Liu
,
J.
, and
Ma
,
Y.
,
2017
, “
Sustainable Design-Oriented Level Set Topology Optimization
,”
ASME J. Mech. Des.
,
139
(
1
), p.
011403
. 10.1115/1.4035052
48.
Liu
,
J.
, and
Ma
,
Y.-S.
,
2015
, “
3D Level-Set Topology Optimization: A Machining Feature-Based Approach
,”
Struct. Multidiscip. Optim.
,
52
(
3
), pp.
563
582
. 10.1007/s00158-015-1263-7
49.
Mei
,
Y.
,
Wang
,
X.
, and
Cheng
,
G.
,
2008
, “
A Feature-Based Topological Optimization for Structure Design
,”
Adv. Eng. Softw.
,
39
(
2
), pp.
71
87
. 10.1016/j.advengsoft.2007.01.023
50.
Zhu
,
J.
,
Zhang
,
W.
,
Beckers
,
P.
,
Chen
,
Y.
, and
Guo
,
Z.
,
2008
, “
Simultaneous Design of Components Layout and Supporting Structures Using Coupled Shape and Topology Optimization Technique
,”
Struct. Multidiscip. Optim.
,
36
(
1
), pp.
29
41
. 10.1007/s00158-007-0155-x
51.
Zhang
,
W.
,
Xia
,
L.
,
Zhu
,
J.
, and
Zhang
,
Q.
,
2011
, “
Some Recent Advances in the Integrated Layout Design of Multicomponent Systems
,”
ASME J. Mech. Des.
,
133
(
10
), pp.
104503
104503
. 10.1115/1.4005083
52.
Zhou
,
M.
, and
Wang
,
M. Y.
,
2013
, “
Engineering Feature Design for Level Set Based Structural Optimization
,”
Comput. Aided Des.
,
45
(
12
), pp.
1524
1537
. 10.1016/j.cad.2013.06.016
53.
Xia
,
L.
,
Zhu
,
J.
,
Zhang
,
W.
, and
Breitkopf
,
P.
,
2013
, “
An Implicit Model for the Integrated Optimization of Component Layout and Structure Topology
,”
Comput. Methods Appl. Mech. Eng.
,
257
, pp.
87
102
. 10.1016/j.cma.2013.01.008
54.
Zhang
,
W.
,
Zhong
,
W.
, and
Guo
,
X.
,
2015
, “
Explicit Layout Control in Optimal Design of Structural Systems With Multiple Embedding Components
,”
Comput. Methods Appl. Mech. Eng.
,
290
, pp.
290
313
. 10.1016/j.cma.2015.03.007
55.
Kang
,
Z.
,
Wang
,
Y.
, and
Wang
,
Y.
,
2016
, “
Structural Topology Optimization With Minimum Distance Control of Multiphase Embedded Components by Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
306
, pp.
299
318
. 10.1016/j.cma.2016.04.001
56.
Zhou
,
Y.
,
Zhang
,
W.
,
Zhu
,
J.
, and
Xu
,
Z.
,
2016
, “
Feature-Driven Topology Optimization Method With Signed Distance Function
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
1
32
. 10.1016/j.cma.2016.06.027
57.
Zhang
,
W.
,
Zhou
,
Y.
, and
Zhu
,
J.
,
2017
, “
A Comprehensive Study of Feature Definitions With Solids and Voids for Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
325
, pp.
289
313
. 10.1016/j.cma.2017.07.004
58.
Choi
,
G.-H.
,
Mun
,
D.
, and
Han
,
S.
,
2002
, “
Exchange of CAD Part Models Based on the Macro-Parametric Approach
,”
Int. J. CadCam.
,
2
(
1
), pp.
13
21
.
59.
Farjana
,
S. H.
,
Han
,
S.
, and
Mun
,
D.
,
2016
, “
Implementation of Persistent Identification of Topological Entities Based on Macro-Parametrics Approach
,”
J. Comput. Des. Eng.
,
3
(
2
), pp.
161
177
. 10.1016/j.jcde.2016.01.001
60.
Yang
,
J.
,
Han
,
S.
,
Cho
,
J.
,
Kim
,
B.
, and
Lee
,
H. Y.
,
2004
, “
An XML-Based Macro Data Representation for a Parametric CAD Model Exchange
,”
Comput. Aided Des. Appl.
,
1
(
1–4
), pp.
153
162
. 10.1080/16864360.2004.10738254
61.
Mun
,
D.
,
Han
,
S.
,
Kim
,
J.
, and
Oh
,
Y.
,
2003
, “
A Set of Standard Modeling Commands for the History-Based Parametric Approach
,”
Comput. Aided Des.
,
35
(
13
), pp.
1171
1179
. 10.1016/S0010-4485(03)00022-8
62.
Khan
,
M. T. H.
,
Demoly
,
F.
, and
Kim
,
K.-Y.
,
2017
, “
Formal Ontology and CAD Integration With Macro Parametric Approach
,”
Comput. Aided Des. Appl.
,
14
(
supp1
), pp.
24
32
. 10.1080/16864360.2017.1308078
63.
Chen
,
J.
,
Shapiro
,
V.
,
Suresh
,
K.
, and
Tsukanov
,
I.
,
2007
, “
Shape Optimization With Topological Changes and Parametric Control
,”
Int. J. Numer. Methods Eng.
,
71
(
3
), pp.
313
346
. 10.1002/nme.1943
64.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
. 10.1016/S0045-7825(02)00559-5
65.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
. 10.1016/j.jcp.2003.09.032
66.
Burger
,
M.
,
Hackl
,
B.
, and
Ring
,
W.
,
2004
, “
Incorporating Topological Derivatives Into Level Set Methods
,”
J. Comput. Phys.
,
194
(
1
), pp.
344
362
. 10.1016/j.jcp.2003.09.033
67.
Sokolowski
,
J.
, and
Zochowski
,
A.
,
1999
, “
On the Topological Derivative in Shape Optimization
,”
SIAM J. Control Optim.
,
37
(
4
), pp.
1251
1272
. 10.1137/S0363012997323230
68.
Céa
,
J.
,
Garreau
,
S.
,
Guillaume
,
P.
, and
Masmoudi
,
M.
,
2000
, “
The Shape and Topological Optimizations Connection
,”
Comput. Methods Appl. Mech. Eng.
,
188
(
4
), pp.
713
726
. 10.1016/S0045-7825(99)00357-6
You do not currently have access to this content.