Abstract

Surrogate models can be used to approximate complex systems at a reduced cost and are widely used when data generation is expensive or time consuming. The accuracy of these models is dependent on the samples used to create them. Therefore, proper sample selection within the parameter space is paramount. Numerous design of experiments (DOE) methodologies have been developed with the aim of identifying the optimal sample set to capture the system of interest. Adaptive sampling techniques are a subclass of DOE methods that identify optimal locations for new samples by leveraging response information from existing samples. By exploiting knowledge of the system, adaptive sampling methods have been demonstrated to significantly reduce the number of samples required to build a surrogate model of a given accuracy. However, utilizing the response information of the previous samples adds a computational cost associated with determining the ideal sample locations. Additionally, this cost typically grows with the sample count. This article presents techniques to reduce the cost associated with the adaptive sampling procedure so that the cost savings provided by adaptive sampling are maximized. A new K-fold cross-validation (KFCV)-Voronoi adaptive sampling technique is proposed to reduce the sample selection costs by adding a global KFCV filter to the cross-validation (CV)-Voronoi technique. The costs are further reduced through an innovative Voronoi batch sampling technique that is demonstrated to outperform naïve batch sampling. The proposed adaptive sampling acceleration techniques are evaluated using benchmark functions of increasing dimension and aerodynamic loading data.

References

References
1.
Aute
,
V.
,
Saleh
,
K.
,
Abdelaziz
,
O.
,
Azarm
,
S.
, and
Radermacher
,
R.
,
2013
, “
Cross-validation Based Single Response Adaptive Design of Experiments for Kriging Metamodeling of Deterministic Computer Simulations
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
581
605
. 10.1007/s00158-013-0918-5
2.
VanderWyst
,
A. S.
,
Sharma
,
V.
,
Martin
,
C. L.
, and
Silva
,
W. A.
,
2017
, “
Big Data Challenges in Fluid-Thermal-Structural Interaction Research
,”
58th {AIAA/ASCE/AHS/ASC} Structures, Structural Dynamics, and Materials Conference
,
Grapevine, TX
,
Jan. 9–13
, pp.
1
14
.
3.
Deschrijver
,
D.
,
Mrozowski
,
M.
,
Dhaene
,
T.
, and
De Zutter
,
D.
,
2008
, “
Macromodeling of Multiport Systems Using a Fast Implementation of the Vector Fitting Method
,”
IEEE Microw. Wirel. Compon. Lett.
,
18
(
6
), pp.
383
385
. 10.1109/LMWC.2008.922585
4.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
. 10.1115/1.2429697
5.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
. 10.1080/00401706.1979.10489755
6.
Viana
,
F. A.
,
Venter
,
G.
, and
Balabanov
,
V.
,
2010
, “
An Algorithm for Fast Optimal Latin Hypercube Design of Experiments
,”
Int. J. Numer. Methods Eng.
,
82
(
2
), pp.
135
156
. 10.1002/nme.2750
7.
Owen
,
A. B.
,
1992
, “
Orthogonal Arrays for Computer Experiments, Integration and Visualization
,”
Stat. Sin.
,
3
, pp.
439
452
.
8.
Liu
,
H.
,
Ong
,
Y.-S.
, and
Cai
,
J.
,
2017
, “
A Survey of Adaptive Sampling for Global Metamodeling in Support of Simulation-Based Complex Engineering Design
,”
Struct. Multidiscip. Optim.
,
57
(
1
), pp.
1
24
. 10.1007/s00158-017-1739-8
9.
Crombecq
,
K.
,
Gorissen
,
D.
,
Deschrijver
,
D.
, and
Dhaene
,
T.
,
2011
, “
A Novel Hybrid Sequential Design Strategy for Global Surrogate Modeling of Computer Experiments
,”
SIAM J. Sci. Comput.
,
33
(
4
), pp.
1948
1974
. 10.1137/090761811
10.
Mackman
,
T.
, and
Allen
,
C.
,
2010
, “
Investigation of an Adaptive Sampling Method for Data Interpolation Using Radial Basis Functions
,”
Int. J. Numer. Methods Eng.
,
83
(
7
), pp.
915
938
.
11.
Douak
,
F.
,
Melgani
,
F.
,
Alajlan
,
N.
,
Pasolli
,
E.
,
Bazi
,
Y.
, and
Benoudjit
,
N.
,
2012
, “
Active Learning for Spectroscopic Data Regression
,”
J. Chemom.
,
26
(
7
), pp.
374
383
. 10.1002/cem.2443
12.
Hendrickx
,
W.
, and
Dhaene
,
T.
,
2005
, “
Sequential Design and Rational Metamodelling
,”
Proceedings of the 37th Conference on Winter Simulation
,
Orlando, FL
,
Dec. 4
, pp.
290
298
.
13.
Clarke
,
S. M.
,
Griebsch
,
J. H.
, and
Simpson
,
T. W.
,
2005
, “
Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1077
1087
. 10.1115/1.1897403
14.
Cressie
,
N.
,
1988
, “
Spatial Prediction and Ordinary Kriging
,”
Math. Geol.
,
20
(
4
), pp.
405
421
. 10.1007/BF00892986
15.
Dyn
,
N.
,
Levin
,
D.
, and
Rippa
,
S.
,
1986
, “
Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions
,”
SIAM J. Sci. Stat. Comput.
,
7
(
2
), pp.
639
659
. 10.1137/0907043
16.
Fang
,
H.
, and
Horstemeyer
,
M. F.
,
2006
, “
Global Response Approximation With Radial Basis Functions
,”
Eng. Optim.
,
38
(
04
), pp.
407
424
. 10.1080/03052150500422294
17.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2002
, “
On Sequential Sampling for Global Metamodeling in Engineering Design
,”
Proceedings of DETC
,
Montreal, Quebec, Canada
,
Sept. 29–Oct. 2
, pp.
539
548
.
18.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
, pp.
409
423
. 10.1214/ss/1177012413
19.
Shewry
,
M. C.
, and
Wynn
,
H. P.
,
1987
, “
Maximum Entropy Sampling
,”
J. Appl. Stat.
,
14
(
2
), pp.
165
170
. 10.1080/02664768700000020
20.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
. 10.1023/A:1008306431147
21.
Li
,
G.
,
Aute
,
V.
, and
Azarm
,
S.
,
2010
, “
An Accumulative Error Based Adaptive Design of Experiments for Offline Metamodeling
,”
Struct. Multidiscip. Optim.
,
40
(
1
), pp.
137
155
. 10.1007/s00158-009-0395-z
22.
Xu
,
S.
,
Liu
,
H.
,
Wang
,
X.
, and
Jiang
,
X.
,
2014
, “
A Robust Error-Pursuing Sequential Sampling Approach for Global Metamodeling Based on Voronoi Diagram and Cross Validation
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071009
. 10.1115/1.4027161
23.
Liu
,
H.
,
Xu
,
S.
,
Wang
,
X.
,
Yang
,
S.
, and
Meng
,
J.
,
2018
, “
A Multi-Response Adaptive Sampling Approach for Global Metamodeling
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
232
(
1
), pp.
3
16
.
24.
Van Der Herten
,
J.
,
Couckuyt
,
I.
,
Deschrijver
,
D.
, and
Dhaene
,
T.
,
2015
, “
A Fuzzy Hybrid Sequential Design Strategy for Global Surrogate Modeling of High-Dimensional Computer Experiments
,”
SIAM J. Sci. Comput.
,
37
(
2
), pp.
A1020
A1039
. 10.1137/140962437
25.
Van Der Herten
,
J.
,
Deschrijver
,
D.
, and
Dhaene
,
T.
,
2015
, “
Fuzzy Local Linear Approximation-Based Sequential Design
,”
IEEE SSCI 2014—2014 IEEE Symposium Series on Computational Intelligence—CIES 2014: 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions, Proceedings
,
Orlando, FL
,
Dec. 9–12
, pp.
17
21
.
26.
Kaminsky
,
A. L.
,
Wang
,
Y.
,
Pant
,
K.
,
Hashii
,
W. N.
, and
Atachbarian
,
A.
,
2018
, “
Adaptive Sampling Techniques for Surrogate Modeling to Create High-Dimension Aerodynamic Loading Response Surfaces
,”
2018 Applied Aerodynamics Conference
,
Reston, VA
,
June 25–29
, pp.
1
23
.
27.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Sondergaard
,
J.
,
2002
, “
DACE-A Matlab Kriging Toolbox
, Version 2.0,” IMM, Informatics and Mathematical Modelling, The Technical University of Denmark, http://www.omicron.dk/dace.html
28.
Rai
,
R.
, and
Campbell
,
M. I.
,
2007
, “
Q2S2: Qualitative and Quantitative Sequential Sampling a Novel Approach to Exploit Qualitative Design Information
,”
International Conference on Engineering Design
,
Paris
,
Aug. 28–31
, pp.
1
12
.
29.
S. a. B. D. Surjanovic
, “
Virtual Library of Simulation Experiments: Test Functions and Datasets
,” https://www.sfu.ca/∼ssurjano/, Accessed July 15, 2019.
30.
Crombecq
,
K.
,
Laermans
,
E.
, and
Dhaene
,
T.
,
2011
, “
Efficient Space-Filling and Non-Collapsing Sequential Design Strategies for Simulation-Based Modeling
,”
Eur. J. Oper. Res.
,
214
(
3
), pp.
683
696
. 10.1016/j.ejor.2011.05.032
31.
Biedron
,
R. T.
,
Carlson
,
J.-R.
,
Derlaga
,
J. M.
,
Gnoffo
,
P. A.
,
Hammond
,
D. P.
,
Jones
,
W. T.
,
Kleb
,
B.
,
Lee-Rausch
,
E. M.
,
Nielsen
,
E. J.
, and
Park
,
M. A.
,
2016
, FUN3D Manual: 12.9, NASA Langley Research Center, NASA/TM-2016-219012, Hampton, VA, Feb. 1.
You do not currently have access to this content.