Abstract

Smart materials provide a means by which we can create engineered mechanisms that artificially mimic the adaptability, flexibility, and responsiveness found in biological systems. Previous studies have developed material-based actuators that could produce targeted shape changes. Here, we extend this capability by introducing a novel computational and experimental method for design and synthesis of a material-based mechanism capable of achieving complex pre-programmed motion. By combining active and passive materials, the algorithm can encode the desired movement into the material distribution of the mechanism. We use multimaterial, multiphysics topology optimization to design a set of kinematic elements that exhibit basic bending and torsional deflection modes. We then use a genetic algorithm to optimally arrange these elements into a sequence that produces the desired motion. We also use experimental measurements to accurately characterize the angular deflection of the 3D-printed kinematic elements in response to thermomechanical loading. We demonstrate this new capability by de novo design of a 3D-printed self-tying knot. This method advances a new paradigm in mechanism design that could enable a new generation of material-driven machines that are lightweight, adaptable, robust to damage, and easily manufacturable by 3D printing.

References

1.
Denket
,
M. A.
,
2006
,
Frontiers in Robotics Research
,
Nova Publishers
,
Hauppauge, NY
.
2.
Tibbits
,
S.
,
2014
, “
4D Printing: Multi-Material Shape Change
,”
Archit. Des.
,
84
(
1
), pp.
116
121
.
3.
Miriyev
,
A.
, and
Kovač
,
M.
,
2020
, “
Skills for Physical Artificial Intelligence
,”
Nat. Mach. Intell.
,
2
(
11
), pp.
658
660
.
4.
Ge
,
Q.
,
Dunn
,
C. K.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2014
, “
Active Origami by 4D Printing
,”
Smart Mater. Struct.
,
23
(
9
), p.
094007
.
5.
Raviv
,
D.
,
Zhao
,
W.
,
McKnelly
,
C.
,
Papadopoulou
,
A.
,
Kadambi
,
A.
,
Shi
,
B.
,
Hirsch
,
S.
, et al
,
2014
, “
Active Printed Materials for Complex Self-Evolving Deformations
,”
Sci. Rep.
,
4
(
1
), p.
7
.
6.
Gu
,
G.
,
Zhang
,
N.
,
Xu
,
H.
,
Lin
,
S.
,
Yu
,
Y.
,
Chai
,
G.
,
Ge
,
L.
, et al
,
2021
, “
A Soft Neuroprosthetic Hand Providing Simultaneous Myoelectric Control and Tactile Feedback
,”
Nat. Biomed. Eng.
,
7
, p.
12
.
7.
Gladman
,
A. S.
,
Matsumoto
,
E. A.
,
Nuzzo
,
R. G.
,
Mahadevan
,
L.
, and
Lewis
,
J. A.
,
2016
, “
Biomimetic 4D Printing
,”
Nat. Mater.
,
15
(
4
), pp.
413
418
.
8.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
9.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liang
,
J.
,
Zang
,
H.
,
Li
,
H.
, and
Wang
,
R.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory
,
143
, p.
103622
.
10.
James
,
K. A.
,
Kennedy
,
G. J.
, and
Martins
,
J. R.
,
2014
, “
Concurrent Aerostructural Topology Optimization of a Wing Box
,”
Comput. Struct.
,
134
, pp.
1
17
.
11.
Carstensen
,
J. V.
,
Lotfi
,
R.
,
Guest
,
J. K.
,
Chen
,
W.
, and
Schroers
,
J.
,
2015
, “
Topology Optimization of Cellular Materials With Maximized Energy Absorption
,”
Proceedings of the ASME 2015 International Design Engineering Technical Conferences
,
Boston, MA
,
Aug. 2–5
, pp.
1
10
.
12.
Maute
,
K.
,
Tkachuk
,
A.
,
Wu
,
J.
,
Qi
,
H. J.
,
Ding
,
Z.
, and
Dunn
,
M. L.
,
2015
, “
Level Set Topology Optimization of Printed Active Composites
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111402
.
13.
Bhattacharyya
,
A.
, and
James
,
K.
,
2021
, “
Topology Optimization of Shape-Memory Polymer Structures With Programmable Morphology
,”
Struct. Multidiscipl. Optim.
,
63
(
1
), pp.
1863
1887
.
14.
Sossou
,
G.
,
Demoly
,
F.
,
Belkebir
,
H.
,
Qi
,
H. J.
,
Gomes
,
S.
, and
Montavon
,
G.
,
2019
, “
Design for 4D Printing: Modeling and Computation of Smart Materials Distributions
,”
Mater. Des.
,
181
, p.
108074
.
15.
Sun
,
X.
,
Yue
,
L.
,
Yu
,
L.
,
Shao
,
H.
,
Peng
,
X.
,
Zhou
,
K.
,
Demoly
,
F.
,
Zhao
,
R.
, and
Qi
,
H. J.
,
2021
, “
Machine Learning-Evolutionary Algorithm Enabled Design for 4D-Printed Active Composite Structures
,”
Adv. Funct. Mater.
,
32
(
10
), p.
2109805
.
16.
Kang
,
Z.
, and
James
,
K.
,
2019
, “
Multimaterial Topology Optimization for Elastic and Thermal Response
,”
Int. J. Numer. Methods Eng.
,
117
(
10
), pp.
1019
1037
.
17.
Haque
,
M. A.
,
Lavrik
,
N. V.
,
Hensley
,
D.
,
Briggs
,
D. P.
, and
McFarlane
,
N.
,
2021
, “
Carbonized Polymer for Joule Heating Processing Towards Biosensor Development
,”
Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
,
Mexico
,
Nov. 1–5
, pp.
7578
7581
.
18.
Paul
,
R. P.
,
1981
,
Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators
,
MIT Press
,
Cambridge, MA
.
19.
Baghani
,
M.
,
Naghdabadi
,
R.
,
Arghavani
,
J.
, and
Sohrabpour
,
S.
,
2012
, “
A Thermodynamically-Consistent 3D Constitutive Model for Shape Memory Polymers
,”
Int. J. Plast.
,
35
, pp.
13
30
.
20.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
21.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.
22.
Hu
,
M.
,
Ge
,
X.
,
Chen
,
X.
,
Mao
,
W.
,
Qian
,
X.
, and
Yuan
,
W.-E.
,
2020
, “
Micro/Nanorobot: A Promising Targeted Drug Delivery System
,”
Pharmaceutics
,
12
(
7
), p.
665
.
23.
Lipson
,
H.
, and
Kurman
,
M.
,
2013
,
Fabricated: The New World of 3D Printing
,
Wiley
,
Indianapolis, IN
.
You do not currently have access to this content.