Abstract

Design-by-analogy (DbA) is an important methodology in mechanical design that generates innovative solutions in the target domain with inspiration from a source domain. The patent database is one of the valuable source domains for the DbA method. Meanwhile, patents are crucial in engineering, especially for engineering design and acquiring an exclusive business advantage. Therefore, efficient patent exploration is essential in patent application and design inspiration. Patent image complements text-based descriptions with visual information. The visual information is practical for patent devices with complex structures. We found that spatial density is vital in extracting the relevant subregions. Therefore, we leveraged this property by incorporating density-based clustering to enrich the training dataset. We also proposed a feature fusion mechanism to utilize the newly extracted subregion information. As a result, we named our method Density-Refine since we improved the performance of patent image retrieval by employing the density property. Our method outperformed the state-of-the-art approaches in the benchmark dataset for patent image retrieval. We also investigate the performance of applying the density property to other similar mediums, such as sketch image retrieval. We expect this work to be a stepping stone to inspire more influential studies in image retrieval and design inspiration.

References

1.
Jiang
,
S.
,
Hu
,
J.
,
Wood
,
K. L.
, and
Luo
,
J.
,
2022
, “
Data-Driven Design-by-Analogy: State-of-the-Art and Future Directions
,”
ASME J. Mech. Des.
,
144
(
2
), p.
020801
.
2.
Wang
,
H.
, and
Zhang
,
Y.
,
2024
, “
Learning Efficient Representations for Image-Based Patent Retrieval
,”
Pattern Recognition and Computer Vision
,
Oct. 13–15
,
Springer Nature
, Singapore, pp.
15
26
.
3.
Kucer
,
M.
,
Oyen
,
D.
,
Castorena
,
J.
, and
Wu
,
J.
,
2022
, “
DeepPatent: Large Scale Patent Drawing Recognition and Retrieval
,”
IEEE/CVF WACV
,
Waikoloa, HI
,
Jan. 3–8
, pp.
2309
2318
.
4.
Higuchi
,
K.
, and
Yanai
,
K.
,
2023
, “
Patent Image Retrieval Using Transformer-Based Deep Metric Learning
,”
World Patent Inform.
,
74
, p.
102217
.
5.
Tan
,
M.
, and
Le
,
Q.
,
2019
, “
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
,”
Proceedings of Machine Learning Research, ICML, Vol. 97
,
Long Beach, CA
,
June 9–15
,
PMLR
, pp.
6105
6114
.
6.
Ester
,
M.
,
Kriegel
,
H.-P.
,
Sander
,
J.
, and
Xu
,
X.
,
1996
, “
A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases With Noise
,”
Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
,
Portland, OR
,
Aug. 2–4
,
AAAI Press
, pp.
226
231
.
7.
Manning
,
C. D.
,
Raghavan
,
P.
, and
Schütze
,
H.
,
2008
,
Introduction to Information Retrieval
,
Cambridge University Press
.
8.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
L. u.
, and
Polosukhin
,
I.
,
2017
,
Attention Is All You Need
,”
Advances in Neural Information Processing Systems
, Vol. 30,
I.
Guyon
,
U. V.
Luxburg
,
S.
Bengio
,
H.
Wallach
,
R.
Fergus
,
S.
Vishwanathan
, and
R.
Garnett
, eds.,
Curran Associates, Inc.
, Long Beach, CA, pp.
6000
6010
.
9.
Feng
,
F.
,
Wang
,
X.
, and
Li
,
R.
,
2014
, “
Cross-Modal Retrieval With Correspondence Autoencoder
,”
ACM MM
,
Nov. 3–7
,
Association for Computing Machinery
, New York, NY, pp.
7
16
.
10.
Radford
,
A.
,
Kim
,
J. W.
,
Hallacy
,
C.
,
Ramesh
,
A.
,
Goh
,
G.
,
Agarwal
,
S.
,
Sastry
,
G.
, et al.,
2021
, “
Learning Transferable Visual Models From Natural Language Supervision
,”
Proceedings of Machine Learning Research, ICML, Vol. 139
,
Virtual Event
,
July 18–24
,
M.
Meila
, and
T.
Zhang
, eds.,
PMLR
, pp.
8748
8763
.
11.
Li
,
J.
,
Li
,
D.
,
Xiong
,
C.
, and
Hoi
,
S.
,
2022
, “
BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
,”
Proceedings of Machine Learning Research, ICML, Vol. 162
,
Baltimore, MD
,
July 17–23
,
K.
Chaudhuri
,
S.
Jegelka
,
L.
Song
,
C.
Szepesvari
,
G.
Niu
, and
S.
Sabato
, eds.,
PMLR
, pp.
12888
12900
.
12.
Ouyang
,
J.
,
Wu
,
H.
,
Wang
,
M.
,
Zhou
,
W.
, and
Li
,
H.
,
2021
, “Contextual Similarity Aggregation With Self-attention for Visual Re-ranking,”
Advances in Neural Information Processing Systems
, Vol. 34,
M.
Ranzato
,
A.
Beygelzimer
,
Y.
Dauphin
,
P.
Liang
, and
J. W.
Vaughan
, eds.,
Curran Associates, Inc.
, pp.
3135
3148
.
13.
Pizzi
,
E.
,
Roy
,
S. D.
,
Ravindra
,
S. N.
,
Goyal
,
P.
, and
Douze
,
M.
,
2022
, “
A Self-Supervised Descriptor for Image Copy Detection
,”
IEEE/CVF CVPR
,
New Orleans, LA
,
July 18–24
, pp.
14512
14522
.
14.
Sangkloy
,
P.
,
Burnell
,
N.
,
Ham
,
C.
, and
Hays
,
J.
,
2016
, “
The Sketchy Database: Learning to Retrieve Badly Drawn Bunnies
,”
ACM Trans. Graph.
,
35
(
4
), pp.
1
12
. .
15.
Eitz
,
M.
,
Hays
,
J.
, and
Alexa
,
M.
,
2012
, “
How Do Humans Sketch Objects?
ACM Trans. Graph. (Proc. SIGGRAPH)
,
31
(
4
), pp.
44:1
44:10
.
16.
Zhang
,
H.
,
Cheng
,
D.
,
Kou
,
Q.
,
Asad
,
M.
, and
Jiang
,
H.
,
2024
, “
Indicative Vision Transformer for End-to-End Zero-Shot Sketch-Based Image Retrieval
,”
Adv. Eng. Inform.
,
60
, p.
102398
.
17.
Bhunia
,
A.
,
Yang
,
Y.
,
Hospedales
,
T. M.
,
Xiang
,
T.
, and
Song
,
Y.
,
2020
, “Sketch Less for More: On-the-Fly Fine-Grained Sketch-Based Image Retrieval,”
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR)
,
Seattle, WA
, pp.
9776
9785
.
18.
Sain
,
A.
,
Bhunia
,
A. K.
,
Chowdhury
,
P. N.
,
Koley
,
S.
,
Xiang
,
T.
, and
Song
,
Y.-Z.
,
2023
, “
CLIP for All Things Zero-Shot Sketch-Based Image Retrieval, Fine-Grained Or Not
,”
IEEE/CVF CVPR
,
Vancouver, BC, Canada
,
July 17–24
, pp.
2765
2775
.
19.
Sain
,
A.
,
Bhunia
,
A. K.
,
Yang
,
Y.
,
Xiang
,
T.
, and
Song
,
Y.-Z.
,
2021
, “
StyleMeUp: Towards Style-Agnostic Sketch-Based Image Retrieval
,”
IEEE/CVF CVPR
,
Nashville, TN
,
June 20–25
, pp.
8504
8513
.
20.
Dey
,
S.
,
Riba
,
P.
,
Dutta
,
A.
,
Llados
,
J. L.
, and
Song
,
Y.-Z.
,
2019
, “
Doodle to Search: Practical Zero-Shot Sketch-Based Image Retrieval
,”
IEEE/CVF CVPR
,
Long Beach, CA
,
June 15–20
,
IEEE
, pp.
2174
2183
.
21.
Huang
,
Z.
,
2020
, “
Deep-Learning-Based Machine Understanding of Sketches: Recognizing and Generating Sketches With Deep Neural Networks
,” Master’s thesis,
EECS Department, University of California
,
Berkeley, CA
, http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-13.html
22.
Nurizada
,
A.
, and
Purwar
,
A.
,
2023
, “
Transforming Hand-Drawn Sketches of Linkage Mechanisms Into Their Digital Representation
,”
J. Comput. Inf. Sci. Eng.
,
24
(
1
), p.
011010
.
23.
Eicholtz
,
M.
, and
Burak Kara
,
L.
,
2015
, “
Intermodal Image-Based Recognition of Planar Kinematic Mechanisms
,”
J. Vis. Lang. Comput.
,
27
, pp.
38
48
(Distributed Multimedia Systems DMS2014 Part II).
24.
Eicholtz
,
M.
, and
Kara
,
L. B.
,
2015
, “
Characterizing the Performance of an Image-Based Recognizer for Planar Mechanical Linkages in Textbook Graphics and Hand-Drawn Sketches
,”
Comput. Graph.
,
52
, pp.
1
17
.
25.
Jiang
,
S.
,
Luo
,
J.
,
Ruiz-Pava
,
G.
,
Hu
,
J.
, and
Magee
,
C. L.
,
2021
, “
Deriving Design Feature Vectors for Patent Images Using Convolutional Neural Networks
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061405
.
26.
Song
,
B.
, and
Luo
,
J.
,
2017
, “
Mining Patent Precedents for Data-Driven Design: The Case of Spherical Rolling Robots
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111420
.
27.
Liu
,
Z.
,
Lin
,
Y.
,
Cao
,
Y.
,
Hu
,
H.
,
Wei
,
Y.
,
Zhang
,
Z.
,
Lin
,
S.
, and
Guo
,
B.
,
2021
, “
Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
,”
IEEE/CVF ICCV
,
Montreal, QC, Canada
,
Oct. 10–17
, pp.
10012
10022
.
28.
Radenović
,
F.
,
Tolias
,
G.
, and
Chum
,
O.
,
2019
, “
Fine-Tuning CNN Image Retrieval With No Human Annotation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
41
(
7
), pp.
1655
1668
.
29.
Liu
,
Z.
,
Hu
,
H.
,
Lin
,
Y.
,
Yao
,
Z.
,
Xie
,
Z.
,
Wei
,
Y.
,
Ning
,
J.
, et al.,
2022
, “
Swin Transformer V2: Scaling Up Capacity and Resolution
,”
IEEE/CVF CVPR
,
New Orleans, LA
,
July 18–24
, pp.
11999
12009
.
30.
Deng
,
J.
,
Guo
,
J.
,
Yang
,
J.
,
Xue
,
N.
,
Kotsia
,
I.
, and
Zafeiriou
,
S.
,
2022
, “
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
44
(
10
), pp.
5962
5979
.
31.
Ge
,
W.
,
2018
, “
Deep Metric Learning With Hierarchical Triplet Loss
,”
ECCV
,
Munich, Germany
,
Sept. 8–14
, pp.
272
288
.
32.
Hoque
,
M. R. U.
,
Wei
,
X.
,
Choudhury
,
M. H.
,
Ajayi
,
K.
,
Gryder
,
M.
,
Wu
,
J.
, and
Oyen
,
D.
,
2022
, “
Segmenting Technical Drawing Figures in US Patents
,” SDU 2022: The AAAI-22 Workshop on Scientific Document Understanding, Virtual, Mar. 1, pp.
1
6
.
33.
Sas
,
J.
,
Markowska-Kaczmar
,
U.
, and
Moumtzidou
,
A.
,
2016
, “
Caption-Guided Patent Image Segmentation
,”
2016 Federated Conference on Computer Science and Information Systems (FedCSIS)
,
Gdansk, Poland
,
Sept. 11–14
, pp.
261
270
.
34.
OuYang
,
K.
, and
Weng
,
C. S.
,
2011
, “
A New Comprehensive Patent Analysis Approach for New Product Design in Mechanical Engineering
,”
Technol. Forecasting Social Change
,
78
(
7
), pp.
1183
1199
(Contains Special Section: Emerging Technologies in Emerging Markets).
35.
Song
,
H.
, and
Fu
,
K.
,
2019
, “
Design-by-Analogy: Exploring for Analogical Inspiration With Behavior, Material, and Component-Based Structural Representation of Patent Databases
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021014
.
36.
Fu
,
K.
,
Cagan
,
J.
,
Kotovsky
,
K.
, and
Wood
,
K.
,
2013
, “
Discovering Structure in Design Databases Through Functional and Surface Based Mapping
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031006
.
37.
Yan
,
B.
, and
Luo
,
J.
,
2017
, “
Measuring Technological Distance for Patent Mapping
,”
J. Assoc. Inf. Sci. Technol.
,
68
(
2
), pp.
423
437
.
38.
Chen
,
A.
, and
Chen
,
R.
,
2015
, “
Design Patent Map: An Innovative Measure for Corporative Design Strategies
,”
Eng. Manage. J.
,
19
, pp.
14
29
.
39.
Murphy
,
J.
,
Fu
,
K.
,
Otto
,
K.
,
Yang
,
M.
,
Jensen
,
D.
, and
Wood
,
K.
,
2014
, “
Function Based Design-by-Analogy: A Functional Vector Approach to Analogical Search
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101102
.
40.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2021
, “
Guiding Data-Driven Design Ideation by Knowledge Distance
,”
Knowl.-Based Syst.
,
218
, p.
106873
.
41.
Cvitanić
,
T.
,
Lee
,
B.
,
Song
,
H. I.
,
Fu
,
K. K.
, and
Rosen
,
D. W.
,
2016
, “
LDA V. LSA: A Comparison of Two Computational Text Analysis Tools for the Functional Categorization of Patents
,”
ICCBR Workshops
,
Atlanta, GA
,
Oct. 31–Nov. 2
, pp.
41
50
.
42.
Benson
,
C. L.
, and
Magee
,
C. L.
,
2015
, “
Quantitative Determination of Technological Improvement From Patent Data
,”
PLoS One
,
10
(
4
), pp.
1
23
.
43.
Cagan
,
J.
,
Leduc
,
P.
, and
Whiting
,
M.
,
2024
, “Searching of Data Structures in Pre-processing Data for a Machine Learning Classifier,” US 11899669B2. https://patents.google.com/patent/US11899669B2/en
44.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Sierakowski
,
R.
,
2009
, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081010
.
45.
Weaver
,
J.
,
Wood
,
K.
, and
Jensen
,
D.
,
2010
, “
Transformation Design Theory: A Meta-Analogical Framework
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031012
.
46.
Fu
,
K. K.
,
Dilmore
,
J.
,
Cagan
,
J.
, and
Dougherty
,
C. H.
,
2013
, “
Using Design Database Structures to Characterize Freedom-to-Operate in a Design Space: A Legal Case Study
,”
Proceedings of the International Conference on Engineering Design, ICED, Vol. 1
,
Seoul, South Korea
,
Aug. 19–22
, pp.
409
418
.
47.
Sarica
,
S.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2020
, “
TechNet: Technology Semantic Network Based on Patent Data
,”
Expert Syst. Appl.
,
142
, p.
112995
.
48.
Sarica
,
S.
,
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K.
,
2021
, “
Idea Generation With Technology Semantic Network
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
35
(
3
), pp.
265
283
.
49.
Han
,
J.
,
Sarica
,
S.
,
Shi
,
F.
, and
Luo
,
J.
,
2022
, “
Semantic Networks for Engineering Design: State of the Art and Future Directions
,”
ASME J. Mech. Des.
,
144
(
2
), p.
020802
.
50.
Zhu
,
Q.
, and
Luo
,
J.
,
2021
, “Generative Pre-trained Transformer for Design Concept Generation: An Exploration,” abs/2111.08489.
51.
Linsey
,
J. S.
,
Clauss
,
E. F.
,
Kurtoglu
,
T.
,
Murphy
,
J. T.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2011
, “
An Experimental Study of Group Idea Generation Techniques: Understanding the Roles of Idea Representation and Viewing Methods
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031008
.
52.
Musgrave
,
K.
,
Belongie
,
S.
, and
Lim
,
S.-N.
,
2020
, “
A Metric Learning Reality Check
,”
ECCV
,
Aug. 23–28
,
Springer-Verlag
, Berlin, pp.
681
699
.
53.
Micikevicius
,
P.
,
Narang
,
S.
,
Alben
,
J.
,
Diamos
,
G.
,
Elsen
,
E.
,
Garcia
,
D.
,
Ginsburg
,
B.
, et al.,
2018
, “
Mixed Precision Training
,”
ICLR
,
Vancouver, BC, Canada
,
Apr. 30–May 3
, pp.
1
12
.
54.
Zhang
,
Y.
,
Qi
,
Q.
,
Liu
,
C.
,
Chen
,
W.
,
Wang
,
F.
,
Li
,
H.
, and
Jin
,
R.
,
2021
, “
Graph Convolution for Re-ranking in Person Re-identification
,”
IEEE ICASSP
,
Singapore
,
May 22–27
, pp.
2704
2708
.
55.
Manda
,
B.
,
Dhayarkar
,
S.
,
Mitheran
,
S.
,
Viekash
,
V.
, and
Muthuganapathy
,
R.
,
2021
, “
‘CADSketchNet’—An Annotated Sketch Dataset for 3D CAD Model Retrieval With Deep Neural Networks
,”
Comput. Graph.
,
99
, pp.
100
113
.
You do not currently have access to this content.