Abstract

Uncertainties in the parameters adopted during the design process make it challenging to design against the reliability of an engineering system. The identification of parameters that are more sensitive to uncertainties is carried out by a sensitivity analysis of the distribution of the output variables. In this context, we have explored the relation between the Fisher information matrix (FIM) and the design entropy, to develop a framework to analyze the degree of change of the probability of failure and entropy as a result of the variation of input parameters. It is found that the changes in the entropy and probability of failure, associated to the variation of the parameters of the distribution of the input variables, are linear combinations of the eigenvalues of the FIM and the projections of the eigenvectors onto the sensitivity vectors, respectively. As an application, the FIM-based sensitivity analysis is performed from Monte Carlo simulations in a physical dynamic structure subjected to random design parameters drawn from Gaussian and Gamma distributions.

References

1.
Dhillon
,
B. S.
,
1999
,
Design Reliability: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
2.
Valdebenito
,
M. A.
, and
Schuëller
,
G. I.
,
2010
, “
A Survey on Approaches for Reliability-Based Optimization
,”
Struct. Multidiscipl. Optim.
,
42
(
5
), pp.
645
663
.
3.
Razavi
,
S.
, and
Gupta
,
H. V.
,
2015
, “
What Do We Mean by Sensitivity Analysis? The Need for Comprehensive Characterization of “Global” Sensitivity in Earth and Environmental Systems Models
,”
Water. Resour. Res.
,
51
(
5
), pp.
3070
3092
.
4.
Kleijnen
,
J. P.
,
2005
, “
An Overview of the Design and Analysis of Simulation Experiments for Sensitivity Analysis
,”
Eur. J. Oper. Res.
,
164
(
2
), pp.
287
300
.
5.
Iooss
,
B.
, and
Lemaître
,
P.
,
2015
,
Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications
,
Springer Nature
,
New York
, pp.
101
122
.
6.
Borgonovo
,
E.
, and
Plischke
,
E.
,
2016
, “
Sensitivity Analysis: A Review of Recent Advances
,”
Eur. J. Oper. Res.
,
248
(
3
), pp.
869
887
.
7.
Razavi
,
S.
,
Jakeman
,
A.
,
Saltelli
,
A.
,
Prieur
,
C.
,
Iooss
,
B.
,
Borgonovo
,
E.
, and
Plischke
,
E.
,
2021
, “
The Future of Sensitivity Analysis: An Essential Discipline for Systems Modeling and Policy Support
,”
Environ. Model. Softw.
,
137
.
8.
Demir
,
G.
,
Chatterjee
,
P.
, and
Pamucar
,
D.
,
2024
, “
Sensitivity Analysis in Multi-Criteria Decision Making: A State-of-the-Art Research Perspective Using Bibliometric Analysis
,”
Expert. Syst. Appl.
,
237
.
9.
Liu
,
H.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2006
, “
Relative Entropy Based Method for Probabilistic Sensitivity Analysis in Engineering Design
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
326
336
.
10.
Fisher
,
R. A.
,
1922
, “
On the Mathematical Foundations of Theoretical Statistics
,”
Philos. Trans. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Charact.
,
222
(
594–604
), pp.
309
368
.
11.
Spall
,
J. C.
,
2008
, “
Improved Methods for Monte Carlo Estimation of the Fisher Information Matrix
,”
2008 American Control Conference
,
Seattle, WA
,
June 11–13
, IEEE, pp.
2395
2400
.
12.
Yang
,
J.
,
Langley
,
R. S.
, and
Andrade
,
L.
,
2022
, “
Digital Twins for Design in the Presence of Uncertainties
,”
Mech. Syst. Signal. Process.
,
179
.
13.
Yang
,
J.
,
2024
, “
Decision-Oriented Two-Parameter Fisher Information Sensitivity Using Symplectic Decomposition
,”
Technometrics
,
66
(
1
), pp.
28
39
.
14.
Spall
,
J. C.
,
2005
,
Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control
,
John Wiley & Sons
,
Hoboken, NJ
.
15.
Saltelli
,
A.
,
2002
, “
Sensitivity Analysis for Importance Assessment
,”
Risk Analy.
,
22
(
3
), pp.
579
590
.
16.
Cover
,
T. M.
,
2006
,
Elements of Information Theory
,
John Wiley & Sons
,
Hoboken, NJ
.
17.
Kullback
,
S.
, and
Leibler
,
R. A.
,
1951
, “
On Information and Sufficiency
,”
Ann. Math. Stat.
,
22
(
1
), pp.
79
86
.
18.
Schervish
,
M. J.
,
2012
,
Theory of Statistics
,
Springer Science & Business Media
,
New York
.
19.
Pham-Gia
,
T.
,
Turkkan
,
N.
, and
Marchand
,
E.
,
2006
, “
Density of the Ratio of Two Normal Random Variables and Applications
,”
Commun. Stat.-Theory Methods
,
35
(
9
), pp.
1569
1591
.
20.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1970
,
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
, Vol.
55
,
US Government Printing Office
,
Washington, DC
.
21.
Bonney
,
M. S.
,
de Angelis
,
M.
,
Dal Borgo
,
M.
,
Andrade
,
L.
,
Beregi
,
S.
,
Jamia
,
N.
, and
Wagg
,
D. J.
,
2022
, “
Development of a Digital Twin Operational Platform Using python Flask
,”
Data-Centric Eng.
,
3
(
e1
).
22.
Saltelli
,
A.
,
2008
,
Global Sensitivity Analysis: The Primer
,
John Wiley & Sons
,
Hoboken, NJ
.
23.
Zhu
,
J.-X.
,
Zhu
,
Z.
, and
Au
,
S.-K.
,
2023
, “
Accelerating Computations in Two-Stage Bayesian System Identification With Fisher Information Matrix and Eigenvalue Sensitivity
,”
Mech. Syst. Signal. Process.
,
186
.
You do not currently have access to this content.