The leaf-type isosceles-trapezoidal flexural (LITF) pivot consists of two compliant beams and two rigid bodies. For a single LITF pivot, the range of motion is small while the center-shift is relatively large. The capability of performance can be improved greatly by the combination of two LITF pivots. Base on the pseudorigid-body (PRB) model of a LITF pivot, a method to construct the double-LITF pivots is presented by regarding a single LITF pivot as a the configurable flexure module. The trends of the center-shift are mainly considered by using this method with the combination of two LIFT pivots. Eight types of double-LITF pivots are synthesized. Compared with the single LIFT pivot, the stroke becomes larger, and stiffness becomes smaller. Four of them have the increased center-shift. The other four have the decreased center-shift. Two of the double-LITF pivots are selected as the examples to explain the proposed method. The comparison between PRB model and finite element analysis result shows the validity and effectiveness of the method.

1.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2007, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
129
(
8
), pp.
816
830
.
2.
Her
,
I.
, and
Chang
,
J. C.
, 1994, “
A Linear Scheme for the Displacement Analysis of Micropositioning Stages With Flexure Hinges
,”
ASME J. Mech. Des.
0161-8458,
116
, pp.
770
776
.
3.
Onillon
,
E.
,
Henein
,
S.
, and
Theurillat
,
P.
, 2003, “
Small Scanning Mirror Mechanism
,”
Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, pp.
1129
1133
.
4.
Ouyang
,
P. R.
,
Zhang
,
W. J.
, and
Gupta
,
M. M.
, 2008, “
A New Compliant Mechanical Amplifier Based on a Symmetric Five-Bar Topology
,”
ASME J. Mech. Des.
0161-8458,
130
(
10
), p.
104501
.
5.
Krishnan
,
G.
, and
Ananthasuresh
,
G. K.
, 2008, “
Evaluation and Design of Displacement-Amplifying Compliant Mechanisms for Sensor Applications
,”
ASME J. Mech. Des.
0161-8458,
130
(
10
), p.
102304
.
6.
Tseytlin
,
Y. M.
, 2006,
Structural Synthesis in Precision Elasticity
,
Springer
,
New York
.
7.
Trease
,
B.
,
Moon
,
Y.
, and
Kota
,
S.
, 2005, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
788
798
.
8.
Howell
,
L. L.
, and
Midha
,
A.
, 1994, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
0161-8458,
116
(
1
), pp.
280
290
.
9.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
10.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2002, “
The Modeling of Cross-Axis Flexural Pivots
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
461
476
.
11.
Smith
,
S. T.
, 2000,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach
,
New York
.
12.
Goldfarb
,
M.
, and
Speich
,
J. E.
, 1999, “
A Well-Behaved Revolute Flexure Joint for Compliant Mechanism Design
,”
ASME J. Mech. Des.
0161-8458,
121
(
3
), pp.
424
429
.
13.
Smith
,
S. T.
, and
Chetwynd
,
D. G.
, 1992,
Foundations of Ultraprecision Mechanism Design
,
Gordon and Breach
,
New York
.
14.
Henein
,
S.
,
Spanoudakis
,
P.
,
Droz
,
S.
,
Myklebust
,
L. I.
, and
Onillon
,
E.
, 2003, “
Flexure Pivot for Aerospace Mechanisms
,”
Tenth European Space Mechanisms and Tribology Symposium
, San Sebastian, Spain.
15.
Pei
,
X.
,
Yu
,
J. J.
,
Zong
,
G. H.
,
Bi
,
S. S.
, and
Yu
,
Z. W.
, 2008, “
Analysis of Rotational Precision for an Isosceles-Trapezoidal Flexural Pivot
,”
ASME J. Mech. Des.
0161-8458,
130
(
5
), p.
052302
.
16.
Pei
,
X.
,
Yu
,
J. J.
,
Zong
,
G. H.
, and
Bi
,
S. S.
, 2008, “
The Stiffness Model of Leaf-Type Isosceles-Trapezoidal Flexural Pivots
,”
ASME J. Mech. Des.
0161-8458,
130
(
8
), p.
082303
.
17.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2007, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
0161-8458,
129
(
6
), pp.
625
639
.
You do not currently have access to this content.