Abstract

This paper presents the novel design and integration of a mobile robot with multi-directional mobility capabilities enabled via a hybrid combination of tracks and wheels. Tracked and wheeled locomotion modes are independent from one another, and are cascaded along two orthogonal axes to provide multi-directional mobility. An actuated mechanism toggles between these two modes for optimal mobility under different surface-traction conditions, and further adds an additional translational axis of mobility. That is, the robot can move in the longitudinal direction via the tracks on rugged terrain for high traction, in the lateral direction via the wheels on smooth terrain for high-speed locomotion, and along the vertical axis via the translational joint. Additionally, the robot is capable of yaw axis mobility using differential drives in both tracked and wheeled modes of operation. The paper presents design and analysis of the proposed robot along with a dynamic stabilization algorithm to prevent the robot from tipping over while carrying an external payload on inclined surfaces. Experimental results using an integrated prototype demonstrate multi-directional capabilities of the mobile platform and the dynamic stability algorithm to stabilize the robot while carrying various external payloads on inclined surfaces measuring up to 2.5 kg and 10 deg, respectively.

References

1.
Moore
,
K. L.
, and
Flann
,
N. S.
,
2000
, “
A Six-Wheeled Omnidirectional Autonomous Mobile Robot
,”
IEEE Cont. Syst. Mag.
,
20
(
6
), pp.
53
66
.
2.
Bayar
,
G.
,
Koku
,
A. B.
, and
ilhan Konukseven
,
E.
,
2009
, “
Design of a Configurable all Terrain Mobile Robot Platform
,” Dimensions, 2000(225 × 400x), p. 225 × 400x.
3.
Bayar
,
G.
,
Koku
,
A. B.
, and
ilhan Konukseven
,
E.
,
2009
, “
Design of a Configurable all Terrain Mobile Robot Platform
,”
Int. J. Math. Models Methods Appl. Sci.
,
3
(
4
), pp.
366
373
.
4.
Michaud
,
F.
,
Letourneau
,
D.
,
Arsenault
,
M.
,
Bergeron
,
Y.
,
Cadrin
,
R.
,
Gagnon
,
F.
,
Legault
,
M. A.
,
Millette
,
M.
,
Paré
,
J. F.
,
Tremblay
,
M. C.
, and
Lepage
,
P.
,
2005
, “
Multi-Modal Locomotion Robotic Platform Using Leg-Track-Wheel Articulations
,”
Auton. Rob.
,
18
(
2
), pp.
137
156
.
5.
Li
,
Z.
,
Ma
,
S.
,
Li
,
B.
,
Wang
,
M.
, and
Wang
,
Y.
,
2009
, “
Parameter Design and Optimization for Mobile Mechanism of a Transformable Wheel-Track Robot
,”
2009 IEEE International Conference on Automation and Logistics
,
Shenyang, China
,
Aug. 5–7
, pp.
158
163
.
6.
Lee
,
J. W.
,
Kim
,
B. S.
, and
Song
,
J. B.
,
2009
, “
A Small Robot Based on Hybrid Wheel-Track Mechanism
,”
Trans. Korean Soc. Mech. Eng. A
,
33
(
6
), pp.
545
551
.
7.
Kim
,
J.
,
Kim
,
Y.G.
,
Kwak
,
J.H.
,
Hong
,
D.H.
, and
An
,
J.
,
2010
, “
Wheel & Track Hybrid Robot Platform for Optimal Navigation in an Urban Environment
,”
Proceedings of SICE Annual Conference
,
Taipei, Taiwan
,
Aug. 18–21
, pp.
881
884
.
8.
Root
,
M.
Next-Generation Unmanned Ground Vehicle is Lighter, Faster, Stronger and More Intelligent
,” http://news.northropgrumman.com/news/releases/photo-release-northrop-grumman-remotec-to-begin-delivering-titus-robot-in-december. Accessed December 13, 2017
9.
Shen
,
S.Y.
,
Li
,
C.H.
,
Cheng
,
C.C.
,
Lu
,
J.C.
,
Wang
,
S.F.
, and
Lin
,
P.C.
,
2009
, “
Design of a Leg-Wheel Hybrid Mobile Platform
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
, pp.
4682
4687
.
10.
Mutka
,
A.
, and
Kovacic
,
Z.
,
2011
, “
A Leg-Wheel Robot-Based Approach to the Solution of Flipper-Track Robot Kinematics
,”
2011 IEEE International Conference on Control Applications (CCA)
,
Denver, CO, USA
,
Sept. 28–30
, pp.
1443
1450
.
11.
Michaud
,
F.
,
Létourneau
,
D.
,
Arsenault
,
M.
,
Bergeron
,
Y.
,
Cadrin
,
R.
,
Gagnon
,
F.
,
Legault
,
M.A.
,
Millette
,
M.
,
Pare
,
J.F.
,
Tremblay
,
M.C.
, and
Lapage
,
P.
,
2003
, “
AZIMUT, a Leg-Track-Wheel Robot
,”
Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453)
, Vol.
3
,
Las Vegas, NV
,
Oct. 27–31
, pp.
2553
2558
.
12.
Kwon
,
H.J.
,
Shim
,
H.
,
Kim
,
D.G.
,
Park
,
S.K.
, and
Lee
,
J.
,
2007
, “
A Development of a Transformable Caterpillar Equipped Mobile Robot
,”
2007 International Conference on Control, Automation and Systems
,
Seoul, South Korea
,
Oct. 17–20
, pp.
1062
1065
.
13.
Gao
,
X.
,
Cui
,
D.
,
Guo
,
W.
,
Mu
,
Y.
, and
Li
,
B.
,
2017
, “
Dynamics and Stability Analysis on Stairs Climbing of Wheel–Track Mobile Robot
,”
Int. J. Adv. Rob. Syst.
,
14
(
4
), pp.
1
13
. .
14.
Ian
,
R.
,
2017
, “
Stairclimbing Wheelchairs: Fact and Fiction
,” https://www.youtube.com/watch?v=AZ9DotVwhlQ. Accessed May 1, 2018.
15.
Salih
,
J. E. M.
,
Rizon
,
M.
,
Yaacob
,
S.
,
Adom
,
A. H.
, and
Mamat
,
M. R.
,
2006
, “
Designing Omni-Directional Mobile Robot with Mecanum Wheel
,”
Am. J. Appl. Sci.
,
3
(
5
), pp.
1831
1835
.
16.
Udengaard
,
M.
, and
Iagnemma
,
K.
,
2009
, “
Analysis, Design, and Control of an Omnidirectional Mobile Robot in Rough Terrain
,”
ASME J. Mech. Des.
,
131
(
12
), pp.
121002
.
17.
Kumar
,
P.
,
Saab
,
W.
, and
Ben-Tzvi
,
P.
,
2017
, “
Design of a Multi-Directional Hybrid-Locomotion Modular Robot With Feedforward Stability Control
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, ASME no. V05BT08A010.
18.
Ben-Tzvi
,
P.
, and
Moubarak
,
P.M.
,
2015
, “
Mobile Robot With Hybrid Traction and Mobility Mechanism
,” U.S. Patent 9,004,200.
19.
Saab
,
W.
, and
Ben-Tzvi
,
P.
,
2015
, “
Development of a Novel Coupling Mechanism for Modular Self-Reconfigurable Mobile Robots
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, ASME no. V05BT08A007.
20.
Saab
,
W.
, and
Ben-Tzvi
,
P.
,
2016
, “
A Genderless Coupling Mechanism With Six-Degrees-of-Freedom Misalignment Capability for Modular Self-Reconfigurable Robots
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061014
.
21.
Ben-Tzvi
,
P.
,
2017
, “
STORM: Self-Configurable and Transformable Omni-Directional Robotic Modules
,” https://youtu.be/1Y7wd6yHATY. Accessed May 1, 2018.
22.
Arvin
,
F.
,
Samsudin
,
K.
, and
Nasseri
,
M. A.
,
2009
, “
Design of a Differential-Drive Wheeled Robot Controller With Pulse-Width Modulation
,”
2009 Innovative Technologies in Intelligent Systems and Industrial Applications
,
Monash, Malaysia
,
July 25–26
, pp.
143
147
.
23.
Gysen
,
B. L.
,
Paulides
,
J. J.
,
Janssen
,
J. L.
, and
Lomonova
,
E. A.
,
2010
, “
Active Electromagnetic Suspension System for Improved Vehicle Dynamics
,”
IEEE Trans. Vehicular Technol.
,
59
(
3
), pp.
1156
1163
.
24.
Gysen
,
B. L.
,
Janssen
,
J. L.
,
Paulides
,
J. J.
, and
Lomonova
,
E. A.
,
2009
, “
Design Aspects of an Active Electromagnetic Suspension System for Automotive Applications
,”
IEEE Trans. Ind. Appl.
,
45
(
5
), pp.
1589
1597
.
25.
Sankaranarayanan
,
V.
,
Emekli
,
M. E.
,
Gilvenc
,
B. A.
,
Guvenc
,
L.
,
Ozturk
,
E. S.
,
Ersolmaz
,
E. S.
,
Eyol
,
I. E.
, and
Sinal
,
M.
,
2008
, “
Semiactive Suspension Control of a Light Commercial Vehicle
,”
IEEE/ASME Trans. Mechatron.
,
5
(
13
), pp.
598
604
.
26.
Waldron
,
K. J.
, and
Abdallah
,
M. E.
,
2007
, “
An Optimal Traction Control Scheme for Off-Road Operation of Robotic Vehicles
,”
IEEE/ASME Trans. Mechatron.
,
12
(
2
), pp.
126
133
.
27.
Amodeo
,
M.
,
Ferrara
,
A.
,
Terzaghi
,
R.
, and
Vecchio
,
C.
,
2010
, “
Wheel Slip Control via Second-Order Sliding-Mode Generation
,”
IEEE Trans. Intell. Transp. Syst.
,
11
(
1
), pp.
122
131
.
28.
Imine
,
H.
,
Fridman
,
L. M.
, and
Madani
,
T.
,
2012
, “
Steering Control for Rollover Avoidance of Heavy Vehicles
,”
IEEE Trans. Vehicular Technol.
,
61
(
8
), pp.
3499
3509
.
29.
Messuri
,
D.
, and
Klein
,
C.
,
1985
, “
Automatic Body Regulation for Maintaining Stability of a Legged Vehicle During Rough-Terrain Locomotion
,”
IEEE J. Rob. Autom.
,
1
(
3
), pp.
132
141
.
30.
Ghasempoor
,
A.
, and
Sepehri
,
N.
,
1995
, “
A Measure of Machine Stability for Moving Base Manipulators
,”
Proceedings of 1995 IEEE International Conference on Robotics and Automation
, Vol.
3
,
Nagoya, Japan
,
May 21–27
, pp.
2249
2254
.
31.
Yuk
,
G. H.
,
Cho
,
W. H.
, and
Yang
,
H. S.
,
2012
, “
Practical Implementation of the Normalized Dynamic Energy Stability Margin for Wheeled Robots
,”
Int. J. Precision Eng. Manuf.
,
13
(
1
), pp.
49
56
.
32.
McGhee
,
R. B.
, and
Frank
,
A. A.
,
1968
, “
On the Stability Properties of Quadruped Creeping Gaits
,”
Math. Biosci.
,
3
, pp.
331
351
.
33.
Song
,
S. M.
, and
Waldron
,
K. J.
,
1989
,
Machines That Walk: The Adaptive Suspension Vehicle
,
MIT press
,
MA
.
34.
Sugano
,
S.
,
Huang
,
Q.
, and
Kato
,
I.
,
1993
, “
Stability Criteria in Controlling Mobile Robotic Systems
,”
Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'93)
, Vol.
2
,
Yokohama, Japan
,
July 26–30
, pp.
832
838
.
35.
Vukobratović
,
M.
, and
Borovac
,
B.
,
2004
, “
Zero-moment Point—Thirty Five Years of its Life
,”
Int. J. Humanoid Rob.
,
1
(
01
), pp.
157
173
.
36.
Kim
,
J.
,
Chung
,
W. K.
,
Youm
,
Y.
, and
Lee
,
B. H.
,
2002
, “
Real-Time ZMP Compensation Method Using Null Motion for Mobile Manipulators
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292)
, Vol.
2
,
Washington, DC
,
May 11–15
, pp.
1967
1972
.
37.
Papadopoulos
,
E. G.
, and
Rey
,
D. A.
,
1996
, “
A New Measure of Tipover Stability Margin for Mobile Manipulators
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Vol.
4
,
Minneapolis, MN
,
Apr. 22–28
, pp.
3111
3116
.
38.
Dube
,
C.
,
2013
, “
Experimental Validation of Tip Over Stability of a Tracked Mobile Manipulator
,”
2013 Africon, Pointe-Aux-Piments
,
Mauritius
,
Sept. 9–12
, pp.
1
6
.
39.
Moubarak
,
P.
, and
Ben-Tzvi
,
P.
,
2012
, “
Modular and Reconfigurable Mobile Robotics
,”
Rob. Auton. Syst.
,
60
(
12
), pp.
1648
1663
.
40.
Schempf
,
H.
,
1995
, “
Houdini: Site and Locomotion Analysis-Driven Design of an In-Tank Mobile Cleanup Robot
,”
American Nuclear Society Winter Meeting Transactions
, (CONF-951006-41).
41.
Guizzo
,
E.
,
2008
, “
Three Engineers, Hundreds of Robots, One Warehouse
,”
IEEE Spectr.
,
45
(
7
), pp.
26
34
.
42.
Gomi
,
T.
, and
Griffith
,
A.
,
1998
, “Developing Intelligent Wheelchairs for the Handicapped,”
Assistive Technology and Artificial Intelligence. Lecture Notes in Computer Science, vol 1458
,
V. O.
Mittal
,
H. A.
Yanco
,
J.
Aronis
and
R.
Simpson
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
150
178
.
You do not currently have access to this content.