Robotic grippers, which act as the end effector and contact the objects directly, play a crucial role in the performance of the robots. In this paper, we design and analyze a new robotic gripper based on the braided tube. Apart from deployability, a self-forcing mechanism, i.e., the holding force increases with load/object weight, facilitates the braided tube as a robotic gripper to grasp objects with different shapes, weights, and rigidities. First, taking a cylindrical object as an example, the self-forcing mechanism is theoretically analyzed, and explicit formulas are derived to estimate the holding force. Second, experimental and numerical analyses are also conducted for a more detailed understanding of the mechanism. The results show that a holding force increment by 120% is achieved due to self-forcing, and the effects of design parameters on the holding force are obtained. Finally, a braided gripper is fabricated and operated on a KUKA robot arm, which successfully grasps a family of objects with varying shapes, weights, and rigidities. To summarize, the new device shows great potentials for a wide range of engineering applications where properties of the objects are varied and unpredictable.

References

1.
Chen
,
F. Y.
,
1982
, “
Force Analysis and Design Considerations of Grippers
,”
Ind. Robot.
,
9
(
4
), pp.
243
249
.
2.
Birglen
,
L.
, and
Schlicht
,
T.
,
2018
, “
A Statistical Review of Industrial Robotic Grippers
,”
Robot. Cim. Int. Manuf.
,
49
, pp.
88
97
.
3.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
4.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
19
), p.
e1707035
.
5.
Seguna
,
C. M.
, and
Saliba
,
M. A.
,
2001
, “
The Mechanical and Control System Design of a Dexterous Robotic Gripper
,”
IEEE International Conference on Electronics
,
St Julians, Malta
,
Sept. 2–5
, pp.
1195
1201
.
6.
Xu
,
Z.
, and
Todorov
,
E.
,
2016
, “
Design of a Highly Biomimetic Anthropomorphic Robotic Hand Towards Artificial Limb Regeneration
,”
IEEE International Conference on Robotics and Automation
,
Stockholm, Sweden
,
May 16–21
, pp.
3485
3492
.
7.
Pons
,
J. L.
,
Ceres
,
R.
, and
Pfeiffer
,
F.
,
1999
, “
Multifingered Dextrous Robotics Hand Design and Control: A Review
,”
Robotica
,
17
(
6
), pp.
661
674
.
8.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem. Int. Edit.
,
123
(
8
), pp.
1930
1935
.
9.
Yamaguchi
,
A.
,
Takemura
,
K.
,
Yokota
,
S.
, and
Edamura
,
K.
,
2012
, “
A Robot Hand Using Electro-Conjugate Fluid: Grasping Experiment With Balloon Actuators Inducing a Palm Motion of Robot Hand
,”
Sensor. Actuat. A Phys.
,
174
(
1
), pp.
181
188
.
10.
Ma
,
R. R.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2013
, “
A Modular, Open-Source 3D Printed Underactuated Hand
,”
IEEE International Conference on Robotics & Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
2737
2743
.
11.
Catalano
,
M. G.
,
Grioli
,
G.
,
Farnioli
,
E.
,
Serio
,
A.
,
Piazza
,
C.
, and
Bicchi
,
A.
,
2014
, “
Adaptive Synergies for the Design and Control of the Pisa/IIT SoftHand
,”
Ind. Robot.
,
33
(
5
), pp.
768
782
.
12.
Schaler
,
E. W.
,
Ruffatto
,
D.
,
Glick
,
P.
,
White
,
V.
, and
Parness
,
A.
,
2017
, “
An Electrostatic Gripper for Flexible Objects
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vancouver, Canada
,
Sept. 24–28
, pp.
1172
1179
.
13.
Shintake
,
J.
,
Rosset
,
S.
,
Schubert
,
B.
,
Floreano
,
D.
, and
Shea
,
H.
,
2016
, “
Versatile Soft Grippers With Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators
,”
Adv. Mater.
,
28
(
2
), pp.
231
238
.
14.
Amend
,
J. R.
,
Brown
,
E.
,
Rodenberg
,
N.
,
Jaeger
,
J. M.
, and
Lipson
,
H.
,
2012
, “
A Positive Pressure Universal Gripper Based on the Jamming of Granular Material
,”
IEEE Trans. Robot.
,
28
(
2
), pp.
341
350
.
15.
Wei
,
Y.
,
Chen
,
Y.
,
Ren
,
T.
,
Chen
,
Q.
,
Yan
,
C.
,
Yang
,
Y.
, and
Li
,
Y.
,
2016
, “
A Novel Variable Stiffness Robotic Gripper Based on Integrated Soft Actuating and Particle Jamming
,”
Soft Robot.
,
3
(
3
), pp.
134
143
.
16.
De
,
B. M.
,
Van
,
C. S.
,
Mortier
,
P.
,
Van
,
L. D.
,
Van
,
I. R.
,
Verdonck
,
P.
, and
Verhegghe
,
B.
,
2009
, “
Virtual Optimization of Self-Expandable Braided Wire Stents
,”
Med. Eng. Phys.
,
31
(
4
), pp.
448
453
.
17.
Hu
,
J.
,
2008
, “
Introduction to Three-Dimensional Fibrous Assemblies
,”
3-D Fibrous Assemblies: Properties, Applications and Modelling of Three-Dimensional Textile Structures
,
Woodhead Publisher
,
Cambridge, UK
, pp.
1
32
.
18.
Rial
,
D.
,
Tiar
,
A.
,
Hocine
,
K.
,
Roelandt
,
J. M.
, and
Wintrebert
,
E.
,
2015
, “
Metallic Braided Structures: The Mechanical Modeling
,”
Adv. Eng. Mater.
,
17
(
6
), pp.
893
904
.
19.
Harte
,
A. M.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2000
, “
Energy Absorption of Foam-Filled Circular Tubes With Braided Composite Walls
,”
Eur. J. Mech. A Solid.
,
19
(
1
), pp.
31
50
.
20.
Seok
,
S.
,
Onal
,
C. D.
,
Cho
,
K. J.
,
Wood
,
R. J.
,
Rus
,
D.
, and
Kim
,
S.
,
2013
, “
Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators
,”
IEEE ASME Trans. Mechatron.
,
18
(
5
), pp.
1485
1497
.
21.
Boxerbaum
,
A. S.
,
Shaw
,
K. M.
,
Chiel
,
H. J.
, and
Quinn
,
R. D.
,
2012
, “
Continuous Wave Peristaltic Motion in a Robot
,”
Int. J. Robot. Res.
,
31
(
3
), pp.
302
318
.
22.
Heller
,
L.
,
Vokoun
,
D.
,
Šittner
,
P.
, and
Finckh
,
H.
,
2012
, “
3D Flexible NiTi-Braided Elastomer Composites for Smart Structure Applications
,”
Smart Mater. Struct.
,
21
(
4
), pp.
317
321
.
23.
Santulli
,
C.
,
Patel
,
S. I.
,
Jeronimidis
,
G.
,
Davis
,
F. J.
, and
Mitchell
,
G. R.
,
2005
, “
Development of Smart Variable Stiffness Actuators Using Polymer Hydrogels
,”
Smart Mater. Struct.
,
14
(
2
), pp.
434
440
.
24.
Yuksekkaya
,
M. E.
, and
Adanur
,
S.
,
2009
, “
Analysis of Polymeric Braided Tubular Structures Intended for Medical Applications
,”
Text. Res. J.
,
79
(
2
), pp.
99
109
.
25.
Maetani
,
I.
,
Shigoka
,
H.
,
Omuta
,
S.
,
Gon
,
K.
, and
Saito
,
M.
,
2012
, “
What Is the Preferred Shape for an Esophageal Stent Flange?
,”
Digest. Eendsc.
,
24
(
6
), pp.
401
406
.
26.
Wahl
,
A. M.
,
1963
, “
Open-Coiled Helical Springs With Large Deflections
,”
Mechanical Spring
,
McGraw-Hill
,
New York
, pp.
241
254
.
27.
Jedwab
,
M. R.
, and
Clerc
,
C. O.
,
1993
, “
A Study of the Geometrical and Mechanical Properties of a Self-Expanding Metallic Stent Theory and Experiment
,”
J. Appl. Biomater.
,
4
(
1
), pp.
77
85
.
28.
Wang
,
R.
, and
Ravichandar
,
K.
,
2004
, “
Mechanical Response of a Metallic Aortic Stent—Part I: Pressure-Diameter Relationship
,”
J. Appl. Mech.
,
71
(
5
), pp.
697
705
.
29.
Ni
,
X. Y.
,
Pan
,
C. W.
, and
Prusty
,
B. G.
,
2015
, “
Numerical Investigations of the Mechanical Properties of a Braided Non-Vascular Stent Design Using Finite Element Method
,”
Comput. Method. Biomec.
,
18
(
10
), pp.
1117
1125
.
30.
Kim
,
J. H.
,
Kang
,
T. J.
, and
Yu
,
W. R.
,
2008
, “
Mechanical Modeling of Self-Expandable Stent Fabricated Using Braiding Technology
J. Biomech.
,
41
(
15
), pp.
3202
3212
.
31.
Li
,
J.
,
Zhang
,
Z.
,
Wang
,
S.
,
Shang
,
Z.
, and
Zhang
,
G.
,
2018
, “
A Specimen Extraction Instrument Based on Braided Fiber Tube for Natural Orifice Translumenal Endoscopic Surgery
,”
ASME J. Med. Devices
,
12
(
3
), p.
031108
.
32.
Dassault Systems
,
2014
,
Abaqus Analysis User’s Manual
, Abaqus Documentation Version 6.14-1,
SIMULA Corp.
,
Providence, RI
.
33.
Alpyildiz
,
T.
,
2012
, “
3D Geometrical Modelling of Tubular Braids
,”
Text. Res. J.
,
82
(
5
), pp.
443
453
.
You do not currently have access to this content.