Abstract

For finite rigid body motion, every two successive screw displacements can be represented by one equivalent screw displacement. However, such phenomenon should not be considered naturally to be valid for incompletely specified displacements (ISDs). There is neither a precise statement for such phenomenon nor an understanding of its range of validity within ISD, such as line segment displacements. As one of the main contributions in this paper, based on dual vector algebra and screw theory, an algorithm is provided to prove the existence of the subset within the scope of the line segment motion, which expresses the similar relation as shown in finite rigid body motion. A numerical example is presented for illustrative purpose.

References

1.
Tsai
,
L. W.
, and
Roth
,
B.
,
1973
, “
Incompletely Specified Displacements: Geometry and Spatial Linkage Synthesis
,”
J. Eng. Ind.
,
95
(
2
), pp.
603
611
. 10.1115/1.3438197
2.
Dimentberg
,
F. M.
,
1965
,
The Screw Calculus and Its Applications in Mechanics
,
Moscow
,
English Translation: US Dept. of Commerce Translation
,
No. AD0680993 (in Russian)
.
3.
Zarrouk
,
D.
,
2018
, “
A Vectorial Method to Derive the Equivalent Rotation of Two Successive Finite Rotations
,”
Mech. Mach. Theory
,
126
, pp.
265
272
. 10.1016/j.mechmachtheory.2018.04.011
4.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge
.
5.
Sticher
,
F.
,
1989
, “
On the Finite Screw Axis Cylindroid
,”
Mech. Mach. Theory
,
24
(
3
), pp.
143
155
. 10.1016/0094-114X(89)90052-9
6.
Parkin
,
I. A.
,
1992
, “
A Third Conformation With the Screw Systems: Finite Twist Displacements of a Directed Line and Point
,”
Mech. Mach. Theory
,
27
(
2
), pp.
177
188
. 10.1016/0094-114X(92)90007-5
7.
Hunt
,
K. H.
, and
Parkin
,
I. A.
,
1995
, “
Finite Displacements of Points, Planes, and Lines via Screw Theory
,”
Mech. Mach. Theory
,
30
(
2
), pp.
177
192
. 10.1016/0094-114X(94)00028-J
8.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press Inc.
,
New York
.
9.
Huang
,
C.
, and
Roth
,
B.
,
1994
, “
Analytic Expressions for the Finite Screw Systems
,”
Mech. Mach. Theory
,
29
(
2
), pp.
207
222
. 10.1016/0094-114X(94)90031-0
10.
Huang
,
C.
,
2000
, “
Derivation of Screw Systems for Displacing Plane Elements
,”
Mech. Mach. Theory
,
35
(
10
), pp.
1445
1453
. 10.1016/S0094-114X(00)00004-5
11.
Huang
,
C.
, and
Wang
,
J. C.
,
2003
, “
The Finite Screw System Associated With the Displacement of a Line
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
105
109
. 10.1115/1.1539510
12.
Sun
,
T.
,
Yang
,
S.
,
Huang
,
T.
, and
Dai
,
J. S.
,
2017
, “
A Way of Relating Instantaneous and Finite Screws Based on the Screw Triangle Product
,”
Mech. Mach. Theory
,
108
, pp.
75
82
. 10.1016/j.mechmachtheory.2016.10.003
13.
Dai
,
J. S.
,
2015
, “
Euler–Rodrigues Formula Variations, Quaternion Conjugation and Intrinsic Connections
,”
Mech. Mach. Theory
,
92
, pp.
144
152
. 10.1016/j.mechmachtheory.2015.03.004
14.
Angeles
,
J.
,
1997
,
Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms
,
Springer
,
New York
.
15.
Dai
,
J. S.
,
2012
, “
Finite Displacement Screw Operators With Embedded Chasles’ Motion
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041002
. 10.1115/1.4006951
16.
Zhang
,
Y.
, and
Ting
,
K. L.
,
2004
, “
On the Basis Screws and Screw Systems of Point-Line and Line Displacements
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
56
62
. 10.1115/1.1637648
17.
Roth
,
B.
,
1967
, “
On the Screw Axes and Other Special Lines Associated With Spatial Displacements of a Rigid Body
,”
J. Eng. Ind.
,
89
(
1
), pp.
102
110
. 10.1115/1.3609977
18.
Bottema
,
O.
,
1973
, “
On a Set of Displacements in Space
,”
J. Eng. Ind.
,
95
(
2
), pp.
451
454
. 10.1115/1.3438176
19.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
Elsevier/North-Holland
,
Amsterdam
.
20.
Yang
,
A. T.
,
1963
, “
Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms
,”
PhD dissertation
,
Columbia University
,
New York, NY
.
21.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press Inc.
,
New York
.
You do not currently have access to this content.