Abstract

Motion/force transmissibility is an essential property reflecting the kinematic performance of parallel robots. Research on this performance of the single-platform parallel robots (SPPRs) has long been concerned and studied. In contrast, although many innovations and applications of the high-speed articulated-platform parallel robots (APPRs) have been presented, few studies on their motion/force transmissibility have been reported. This paper deals with the motion/force transmissibility analysis of high-speed parallel robots with articulated platforms. A modified output transmission index (MOTI) for the high-speed parallel robots with articulated platforms is proposed based on a newly defined concept of equivalent transmission wrench screw. Furthermore, by having an insight into the instantaneous relative motion inside the mobile platform, a medial transmission index (MTI) is proposed to evaluate its internal motion/force transmissibility. Based on these foundations, the local transmission index (LTI) is redefined as the minimum value of the input, modified output, and medial transmission indices. Under the framework of the above performance indices, motion/force transmissibility analysis of two typical high-speed articulated-platform parallel robots, i.e., Heli4 and Par4, are presented. The proposed indices are excepted to be applied to the optimal design of high-speed parallel robots with articulated platforms.

References

1.
Merlet
,
J. P.
,
2006
,
Parallel Robots (Solid Mechanics and Its Applications, Vol. 2)
,
Springer-Verlag
,
Dordrecht, The Netherlands
.
2.
McClintock
,
H.
,
Temel
,
F. Z.
,
Doshi
,
N.
,
Koh
,
J.
, and
Wood
,
R. J.
,
2018
, “
The MilliDelta: A High-Bandwidth, High-Precision, Millimeter-Scale Delta Robot
,”
Sci. Rob.
,
3
(
14
), p.
3018
. 10.1126/scirobotics.aar3018
3.
Isaksson
,
M.
,
Gosselin
,
C. M.
, and
Marlow
,
K.
,
2017
, “
Singularity Analysis of a Class of Kinematically Redundant Parallel Schönflies Motion Generators
,”
Mech. Mach. Theory
,
112
, pp.
172
191
. 10.1016/j.mechmachtheory.2017.01.012
4.
Shariatee
,
M.
,
Akbarzadeh
,
A.
,
Mousavi
,
A.
, and
Alimardani
,
S.
,
2014
, “
Design of an Economical SCARA Robot for Industrial Applications
,”
RSI/ISM ICRoM 2014
,
Tehran, Iran
,
Oct. 15–17
, pp.
534
539
.
5.
Clavel
,
R.
,
1990
, “
Device for the Movement and Positioning of an Element in Space
”, U.S. Patent No. 4,976,582.
6.
Liu
,
S.
,
Huang
,
T.
,
Mei
,
J.
,
Zhao
,
X.
,
Wang
,
P.
, and
Chetwynd
,
D. G.
,
2012
, “
Optimal Design of a 4-DOF SCARA Type Parallel Robot Using Dynamic Performance Indices and Angular Constraints
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031005
. 10.1115/1.4006743
7.
Li
,
Z. B.
,
Lou
,
Y. J.
,
Zhang
,
Y. S.
,
Liao
,
B.
, and
Li
,
Z. X.
,
2013
, “
Type Synthesis, Kinematic Analysis, and Optimal Design of a Novel Class of Schönflies-Motion Parallel Manipulators
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
674
686
. 10.1109/TASE.2012.2206023
8.
Xie
,
F. G.
, and
Liu
,
X.-J.
,
2015
, “
Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041015
. 10.1115/1.4029440
9.
Wu
,
G. L.
,
Bai
,
S. P.
, and
Hjørnet
,
P.
,
2016
, “
Architecture Optimization of a Parallel Schönflies-Motion Robot for Pick-and-Place Applications in a Predefined Workspace
,”
Mech. Mach. Theory
,
106
, pp.
148
165
. 10.1016/j.mechmachtheory.2016.09.005
10.
Krut
,
S.
,
Company
,
O.
,
Nabat
,
V.
, and
Pierrot
,
F.
,
2006
, “
Heli4: A Parallel Robot for Scara Motions With a Very Compact Traveling Plate and a Symmetrical Design
,”
IEEE/RSJ IROS 2006
,
Beijing, China
,
Oct. 9–15
, pp.
1656
1661
.
11.
Corbel
,
D.
,
Gouttefarde
,
M.
,
Company
,
O.
, and
Pierrot
,
F.
,
2010
, “
Actuation Redundancy as a Way to Improve the Acceleration Capabilities of 3 T and 3T1R Pick-and-Place Parallel Manipulators
,”
ASME J. Mech. Rob.
,
2
(
4
), pp.
317
337
. 10.1115/1.4002078
12.
Pierrot
,
F.
, and
Company
,
O.
,
1999
, “
H4: A New Family of 4-DOF Parallel Robots
,”
IEEE/ASME ICAIM 1999
,
Atlanta, GA
,
Sept. 19–23
, pp.
508
513
.
13.
Krut
,
S.
,
Benoit
,
M.
,
Ota
,
H.
, and
Pierrot
,
F.
,
2003
, “
I4: A New Parallel Mechanism for SCARA Motions
,”
IEEE ICRA 2003
,
Taipei, Taiwan
,
Sept. 14–19
, pp.
1875
1880
.
14.
Krut
,
S.
,
Nabat
,
V.
,
Company
,
O.
, and
Pierrot
,
F.
,
2004
, “
A High-Speed Parallel Robot for SCARA Motions
,”
IEEE ICRA 2004
,
New Orleans, LA
,
Apr. 26–May 1
, pp.
4109
4115
.
15.
Nabat
,
V.
,
de la O Rodriguez
,
M.
,
Company
,
O.
,
Krut
,
S.
, and
Pierrot
,
F.
,
2005
, “
Par4: Very High Speed Parallel Robot for Pick-and-Place
,”
IEEE/RSJ IROS 2005
,
Edmonton, Alberta, Canada
,
Aug. 2–6
, pp.
553
558
.
16.
Pierrot
,
F.
,
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Poignet
,
P.
,
2009
, “
Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
213
224
. 10.1109/TRO.2008.2011412
17.
Meng
,
Q. Z.
,
Xie
,
F. G.
, and
Liu
,
X.-J.
,
2017
, “
Conceptual Design and Kinematic Analysis of a Novel Parallel Robot for High-Speed Pick-and-Place Operations
,”
Front. Mech. Eng.
,
13
(
2
), pp.
211
224
. 10.1007/s11465-018-0471-4
18.
Chen
,
X.
,
Chen
,
C.
, and
Liu
,
X.-J.
,
2015
, “
Evaluation of Force/Torque Transmission Quality for Parallel Manipulators
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041013
. 10.1115/1.4029188
19.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
. 10.1177/027836498500400201
20.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1989
, “
The Optimum Kinematic Design of a Spherical Three-Degree-of- Freedom Parallel Manipulator
,”
J. Mech. Des.
,
111
(
2
), pp.
202
207
. 10.1115/1.3258984
21.
Ranjbaran
,
F.
,
Angeles
,
J.
,
González-Palacios
,
M. A.
, and
Patel
,
R. V.
,
1995
, “
The Mechanical Design of a Seven-Axes Manipulator With Kinematic Isotropy
,”
J. Intell. Rob. Syst.
,
14
(
1
), pp.
21
41
. 10.1007/BF01254006
22.
Kim
,
S.-G.
, and
Ryu
,
J.
,
2003
, “
New Dimensionally Homogeneous Jacobian Matrix Formulation by Three end-Effector Points for Optimal Design of Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
19
(
4
), pp.
731
736
. 10.1109/TRA.2003.814496
23.
Altuzarra
,
O.
,
Salgado
,
O.
,
Petuya
,
V.
, and
Hernández
,
A.
,
2006
, “
Point-Based Jacobian Formulation for Computational Kinematics of Manipulators
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1407
1423
. 10.1016/j.mechmachtheory.2006.01.011
24.
Pond
,
G. T.
, and
Carretero
,
J. A.
,
2011
, “
Dexterity Measures and Their Use in Quantitative Dexterity Comparisons
,”
Meccanica
,
46
(
1
), pp.
51
64
. 10.1007/s11012-010-9381-1
25.
Alt
,
H.
,
1932
, “
Der Übertragungswinkel Und Seine Bedeutung Für Das Konstruieren Periodischer Getriebe
,”
Werkstattstechnik
,
26
(
4
), pp.
61
64
.
26.
Yuan
,
M. S. C.
,
Freudenstein
,
F.
, and
Woo
,
L. S.
,
1971
, “
Kinematic Analysis of Spatial Mechanisms by Means of Screw Coordinates. Part 2—Analysis of Spatial Mechanisms
,”
J. Eng. Ind.
,
93
(
1
), p.
67
. 10.1115/1.3427919
27.
Sutherland
,
G.
, and
Roth
,
B.
,
1973
, “
A Transmission Index for Spatial Mechanisms
,”
J. Eng. Ind.
,
95
(
2
), p.
589
. 10.1115/1.3438195
28.
Tsai
,
M. J.
, and
Lee
,
H. W.
,
1994
, “
The Transmissivity and Manipulability of Spatial Mechanisms
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
137
143
. 10.1115/1.2919337
29.
Chen
,
C.
, and
Angeles
,
J.
,
2007
, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
. 10.1016/j.mechmachtheory.2006.08.001
30.
Takeda
,
Y.
, and
Funabashi
,
H.
,
1995
, “
Motion Transmissibility of In-Parallel Actuated Manipulators
,”
JSME Int. J. Ser. C
,
38
(
4
), pp.
749
755
.
31.
Takeda
,
Y.
,
Funabashi
,
H.
, and
Ichimaru
,
H.
,
1997
, “
Development of Spatial In-Parallel Actuated Manipulators With Six Degrees of Freedom With High Motion Transmissibility
,”
JSME Int. J. Ser. C
,
40
(
2
), pp.
299
308
. 10.1299/jsmec.40.299
32.
Chang
,
W. T.
,
Lin
,
C. C.
, and
Lee
,
J. J.
,
2003
, “
Force Transmissibility Performance of Parallel Manipulators
,”
J. Rob. Syst.
,
20
(
11
), pp.
659
670
. 10.1002/rob.10115
33.
Liu
,
X.-J.
,
Wu
,
C.
, and
Wang
,
J. S.
,
2008
, “
A New Index For the Performance Evaluation of Parallel Manipulators: A Study on Planar Parallel Manipulators
,”
WCICA 2008
,
Chongqing, China
,
June 25–27
, pp.
353
357
.
34.
Wang
,
J. S.
,
Liu
,
X.-J.
, and
Wu
,
C.
,
2009
, “
Optimal Design of a New Spatial 3-DOF Parallel Robot With Respect to a Frame-Free Index
,”
Sci. China Ser. E: Technol. Sci.
,
52
(
4
), pp.
986
999
. 10.1007/s11431-008-0305-4
35.
Wu
,
C.
,
Liu
,
X.-J.
,
Wang
,
L. P.
, and
Wang
,
J. S.
,
2010
, “
Optimal Design of Spherical 5R Parallel Manipulators Considering the Motion/Force Transmissibility
,”
ASME J. Mech. Des.
,
132
(
3
), p.
031002
. 10.1115/1.4001129
36.
Wang
,
J. S.
,
Wu
,
C.
, and
Liu
,
X.-J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
. 10.1016/j.mechmachtheory.2010.05.001
37.
Liu
,
X.-J.
,
Wu
,
C.
, and
Wang
,
J. S.
,
2012
, “
A New Approach for Singularity Analysis and Closeness Measurement to Singularities of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041001
. 10.1115/1.4007004
38.
Xie
,
F. G.
,
Liu
,
X.-J.
, and
Wang
,
J. S.
,
2011
, “
Performance Evaluation of Redundant Parallel Manipulators Assimilating Motion/Force Transmissibility
,”
Int. J. Adv. Rob. Syst.
,
8
(
5
), pp.
113
124
.
39.
Huang
,
T.
,
Wang
,
M. X.
,
Yang
,
S. F.
,
Sun
,
T.
,
Chetwynd
,
D. G.
, and
Xie
,
F. G.
,
2014
, “
Force/Motion Transmissibility Analysis of Six Degree of Freedom Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031010
. 10.1115/1.4026631
40.
Briot
,
S.
,
Glazunov
,
V.
, and
Arakelian
,
V.
,
2013
, “
Investigation on the Effort Transmission in Planar Parallel Manipulators
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011011
. 10.1115/1.4023325
41.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L. D.
,
2016
, “
Variable Motion/Force Transmissibility of a Metamorphic Parallel Mechanism With Reconfigurable 3 T and 3R Motion
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051001
. 10.1115/1.4032409
42.
Marlow
,
K.
,
Isaksson
,
M.
, and
Nahavandi
,
S.
,
2016
, “
Motion/Force Transmission Analysis of Planar Parallel Mechanisms With Closed-Loop Subchains
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041019
. 10.1115/1.4033158
43.
Li
,
Q. C.
,
Zhang
,
N. B.
, and
Wang
,
F. B.
,
2016
, “
New Indices for Optimal Design of Redundantly Actuated Parallel Manipulators
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011007
.
44.
Brinker
,
J.
,
Corves
,
B.
, and
Takeda
,
Y.
,
2018
, “
Kinematic Performance Evaluation of High-Speed Delta Parallel Robots Based on Motion/Force Transmission Indices
,”
Mech. Mach. Theory
,
125
, pp.
111
125
. 10.1016/j.mechmachtheory.2017.11.029
45.
Takeda
,
Y.
, and
Liang
,
X. H.
,
2017
, “
Transmission Index of Lower-Mobility Parallel Mechanism: Case Study on 3-PRS Mechanism
,”
ASME IDETC/CIE 2017
,
Cleveland, OH
,
Aug. 6–9
.
46.
Russo
,
M.
,
Ceccarelli
,
M.
, and
Takeda
,
Y.
,
2018
, “
Force Transmission and Constraint Analysis of a 3-SPR Parallel Manipulator
,”
Proc. Inst. Mech. Eng. C
,
232
(
23
), pp.
4399
4409
.
47.
Liu
,
X.-J.
,
Han
,
G.
,
Xie
,
F. G.
, and
Meng
,
Q. Z.
,
2018
, “
A Novel Acceleration Capacity Index Based on Motion/Force Transmissibility for High-Speed Parallel Robots
,”
Mech. Mach. Theory
,
126
, pp.
155
170
. 10.1016/j.mechmachtheory.2018.03.013
48.
Company
,
O.
,
Krut
,
S.
, and
Pierrot
,
F.
,
2006
, “
Internal Singularity Analysis of a Class of Lower Mobility Parallel Manipulators With Articulated Traveling Plate
,”
IEEE Trans. Rob.
,
22
(
1
), pp.
1
11
. 10.1109/TRO.2005.858862
49.
Song
,
Y. M.
,
Gao
,
H.
,
Sun
,
T.
,
Dong
,
G.
,
Lian
,
B. B.
, and
Qi
,
Y.
,
2014
, “
Kinematic Analysis and Optimal Design of a Novel 1T3R Parallel Manipulator With an Articulated Travelling Plate
,”
Rob. Comput. Integr. Manuf.
,
30
(
5
), pp.
508
516
. 10.1016/j.rcim.2014.03.006
50.
Li
,
Y. H.
,
Ma
,
Y.
,
Liu
,
S. T.
,
Luo
,
Z. J.
,
Mei
,
J. P.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2014
, “
Integrated Design of a 4-DOF High-Speed Pick-and-Place Parallel Robot
,”
CIRP Ann.
,
63
(
1
), pp.
185
188
. 10.1016/j.cirp.2014.03.101
51.
Wang
,
C. Z.
,
Fang
,
Y. F.
, and
Guo
,
S.
,
2016
, “
Design and Analysis of 3R2 T and 3R3 T Parallel Mechanisms With High Rotational Capability
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011004
. 10.1115/1.4029834
52.
Sun
,
T.
,
Song
,
Y. M.
,
Gao
,
H.
, and
Qi
,
Y.
,
2015
, “
Topology Synthesis of a 1-Translational and 3-Rotational Parallel Manipulator With an Articulated Traveling Plate
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031015
. 10.1115/1.4028626
53.
Jin
,
X. D.
,
Fang
,
Y. F.
, and
Zhang
,
D.
,
2019
, “
Design of a Class of Generalized Parallel Mechanisms With Large Rotational Angles and Integrated End-Effectors
,”
Mech. Mach. Theory
,
134
, pp.
117
134
. 10.1016/j.mechmachtheory.2018.12.027
54.
Wu
,
G. L.
,
Bai
,
S. P.
, and
Caro
,
S.
,
2018
, “
A Transmission Quality Index for a Class of Four-Limb Parallel Schoenflies Motion Generators
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051014
. 10.1115/1.4040353
55.
Joshi
,
S. A.
, and
Tsai
,
L. W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
. 10.1115/1.1469549
56.
Meng
,
Q. Z.
,
Xie
,
F. G.
,
Liu
,
X.-J.
, and
Takeda
,
Y.
,
2018
, “
Extension of Motion/Force Transmission Index to Parallel Manipulators With Double Platforms-Case Study on the Par4 Manipulator
,”
ASME IDETC/CIE 2018
,
Quebec, Canada
,
Aug. 26–29
.
You do not currently have access to this content.