Abstract

As the population ages, increasingly more individuals experience ankle disabilities caused by stroke and cerebral palsy. Studies on parallel robots for ankle rehabilitation have been conducted under this circumstance. This paper presents a novel parallel ankle rehabilitation robot with the key features of a simple configuration and actuator nonredundancy. The mechanical design is determined, and a prototype is built. Additionally, inverse position solution is addressed to calculate the workspace of the parallel robot. Jacobian matrices mapping the velocity and force from the active joint space to the task space are derived, and kinetostatic performance indices, namely, motion isotropy, force transfer ratio, and force isotropic radius are defined. Moreover, the inverse dynamic model is presented using the Newton–Euler formulation. Dynamic evaluation index, i.e., dynamic uniformity, is proposed according to the derived Jacobian matrix and inertia matrix. Based on the workspace analysis, the parallel robot demonstrates a sufficient workspace for ankle rehabilitation compared with measured range of motion of human ankle joint complex. The results of the kinetostatic and dynamic performance analysis indicate that the parallel robot possesses good motion isotropy, high force transfer ratio, large force isotropic radius, and relatively uniform dynamic dexterity within most of the workspace, especially in the central part. A numerical example is presented to simulate the rehabilitation process and verify the correctness of the inverse dynamic model. The simplicity and the performance of the proposed robot indicate that it has the potential to be widely used for ankle rehabilitation.

References

1.
Li
,
J.
,
Zhang
,
Z.
,
Tao
,
C.
, and
Ji
,
R.
,
2017
, “
A Number Synthesis Method of the Self-Adapting Upper-Limb Rehabilitation Exoskeletons
,”
Int. J. Adv. Robot. Syst.
,
14
(
3
), pp.
1
14
.
2.
Zhou
,
Z.
,
Zhou
,
Y.
,
Wang
,
N.
,
Gao
,
F.
,
Wei
,
K.
, and
Wang
,
Q.
,
2014
, “
On the Design of a Robot-Assisted Rehabilitation System for Ankle Joint With Contracture and/or Spasticity Based on Proprioceptive Neuromuscular Facilitation
,”
2014 IEEE International Conference on Robotics and Automation
,
Hong Kong, China
,
May 31–June 7
, pp.
736
741
, Paper No. 6906936.
3.
Jamwal
,
P.
,
Hussain
,
S.
,
Ghayesh
,
M.
, and
Rogozina
,
S.
,
2017
, “
Adaptive Impedance Control of Parallel Ankle Rehabilitation Robot
,”
J. Dyn. Syst. Meas. Control
,
139
(
11
), p.
111006
. 10.1115/1.4036560
4.
Girone
,
M.
,
Burdea
,
G.
,
Bouzit
,
M.
,
Popescu
,
V.
, and
Deutsch
,
J.
,
2000
, “
Orthopedic Rehabilitation Using the ‘Rutgers Ankle’ Interface
,”
Stud. Health. Tech. Informat.
,
70
(
70
), pp.
89
95
.
5.
Takemura
,
H.
,
Onodera
,
T.
,
Ding
,
M.
, and
Mizoguchi
,
H.
,
2012
, “
Design and Control of a Wearable Steward Platform-Type Ankle-Foot Assistive Device
,”
Int. J. Adv. Robot. Syst.
,
9
(
202
), p.
52449
.
6.
Dai
,
J. S.
, and
Zhao
,
T.
,
2004
, “
Sprained Ankle Physiotherapy Based Mechanism Synthesis and Stiffness Analysis of a Robotic Rehabilitation Device
,”
Auton. Robots
,
16
(
2
), pp.
207
218
. 10.1023/B:AURO.0000016866.80026.d7
7.
Saglia
,
J.
,
Tsagarakis
,
N.
,
Dai
,
J. S.
, and
Caldwell
,
D.
,
2009
, “
A High-Performance Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
Int. J. Robot. Res.
,
28
(
9
), pp.
1216
1227
. 10.1177/0278364909104221
8.
Liu
,
G.
,
Gao
,
J.
,
Yue
,
H.
,
Zhang
,
X.
, and
Lu
,
G.
,
2006
, “
Design and Kinematics Simulation of Parallel Robots for Ankle Rehabilitation
,”
Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation
,
Luoyang, China
,
June 25–28
, pp.
253
258
, Paper No. 281710.
9.
Jamwal
,
P.
,
Hussain
,
S.
,
Mir-Nasiri
,
N.
,
Ghayesh
,
M.
, and
Xie
,
S. Q.
,
2016
, “
Tele-rehabilitation Using In-House Wearable Ankle Rehabilitation Robot
,”
Assist. Technol.
,
30
(
1
), pp.
1
10
. 10.1080/10400435.2016.1230153
10.
Tsoi
,
Y.
,
Xie
,
S. Q.
, and
Graham
,
A.
,
2009
, “
Design, Modeling and Control of an Ankle Rehabilitation Robot
,”
Des. Control Intell. Robot. Syst.
,
177
, pp.
377
399
. 10.1007/978-3-540-89933-4_18
11.
Zhang
,
M.
,
Cao
,
J.
,
Zhu
,
G.
,
Miao
,
Q.
,
Zeng
,
X.
, and
Xie
,
S. Q.
,
2017
, “
Reconfigurable Workspace and Torque Capacity of a Compliant Ankle Rehabilitation Robot (CARR)
,”
Robot Auton. Syst.
,
98
, pp.
213
221
. 10.1016/j.robot.2017.06.006
12.
Jamwal
,
P.
,
Xie
,
S. Q.
,
Hussain
,
S.
, and
Parsons
,
J.
,
2014
, “
An Adaptive Wearable Parallel Robot for the Treatment of Ankle Injuries
,”
IEEE/ASME Trans. Mech.
,
19
(
1
), pp.
64
75
. 10.1109/TMECH.2012.2219065
13.
Jamwal
,
P.
,
Hussain
,
S.
,
Ghayesh
,
M.
, and
Rogozina
,
S.
,
2016
, “
Impedance Control of an Intrinsically Compliant Parallel Ankle Rehabilitation Robot
,”
IEEE Trans. Ind. Electron.
,
63
(
6
), pp.
3638
3647
. 10.1109/TIE.2016.2521600
14.
Jamwal
,
P.
,
Xie
,
S. Q.
, and
Aw
,
K.
,
2009
, “
Kinematic Design Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Genetic Algorithm
,”
Robot. Auton. Syst.
,
57
(
10
), pp.
1018
1027
. 10.1016/j.robot.2009.07.017
15.
Jamwal
,
P.
,
Hussain
,
S.
, and
Xie
,
S. Q.
,
2014
, “
Three-Stage Design Analysis and Multicriteria Optimization of a Parallel Ankle Rehabilitation Robot Using Genetic Algorithm
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
4
), pp.
1433
1446
. 10.1109/TASE.2014.2331241
16.
Jamwal
,
P.
, and
Hussain
,
S.
,
2016
, “
Design Optimization of a Cable Actuated Parallel Ankle Rehabilitation Robot: A Fuzzy Based Multi-Objective Evolutionary Approach
,”
J. Int. Fuzzy Syst.
,
31
(
3
), pp.
1897
1908
. 10.3233/JIFS-16030
17.
Jamwal
,
P.
, and
Hussain
,
S.
,
2016
, “
Multicriteria Design Optimization of a Parallel Ankle Rehabilitation Robot: Fuzzy Dominated Sorting Evolutionary Algorithm Approach
,”
IEEE Trans. Syst. Man. Cybern. Syst.
,
46
(
5
), pp.
589
597
. 10.1109/TSMC.2015.2478389
18.
Zhang
,
M.
,
Xie
,
S. Q.
,
Li
,
X.
,
Zhu
,
G.
,
Meng
,
W.
,
Huang
,
X.
, and
Veale
,
A.
,
2018
, “
Adaptive Patient-Cooperative Control of a Compliant Ankle Rehabilitation Robot (CARR) With Enhanced Training Safety
,”
IEEE Trans. Ind. Electron.
,
65
(
2
), pp.
1398
1407
. 10.1109/TIE.2017.2733425
19.
Meng
,
W.
,
Xie
,
S. Q.
,
Liu
,
Q.
,
Lu
,
C.
, and
Ai
,
Q.
,
2017
, “
Robust Iterative Feedback Tuning Control of a Compliant Rehabilitation Robot for Repetitive Ankle Training
,”
IEEE/ASME Trans. Mech.
,
22
(
1
), pp.
173
184
. 10.1109/TMECH.2016.2618771
20.
Zhang
,
M.
,
Cao
,
J.
,
Xie
,
S. Q.
,
Zhu
,
G.
,
Zeng
,
X.
,
Huang
,
X.
, and
Xu
,
Q.
,
2017
, “
A Preliminary Study on Robot-Assisted Ankle Rehabilitation for the Treatment of Drop Foot
,”
J. Intell. Robot. Syst.
,
91
, pp.
1
9
. 10.1007/s10846-017-0652-0
21.
Wang
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Zhou
,
C.
,
2015
, “
Design and Kinematic Analysis of Redundantly Actuated Parallel Mechanisms for Ankle Rehabilitation
,”
Robotica
,
33
(
2
), pp.
366
384
. 10.1017/S0263574714000241
22.
Wang
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Chen
,
Y.
,
2013
, “
Design and Kinematical Performance Analysis of a 3-RUS/RRR Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
J. Mech. Robot.
,
5
(
4
), p.
041003
. 10.1115/1.4024736
23.
Khalid
,
Y.
,
Gouwanda
,
D.
, and
Parasuraman
,
S.
,
2015
, “
A Review on the Mechanical Design Elements of Ankle Rehabilitation Robot
,”
J. Eng. Med.
,
229
(
6
), pp.
452
463
. 10.1177/0954411915585597
24.
Isman
,
R. E.
, and
Inman
,
V. T.
,
1969
, “
Anthropometric Studies of the Human Foot and Ankle
,”
Bull. Pros. Res.
,
11
, pp.
97
129
.
25.
Ferraresi
,
C.
,
Benedictis
,
C. D.
,
Franco
,
W.
,
Maffiodo
,
D.
, and
Leardini
,
A.
,
2017
, “
In-Vivo Analysis of Ankle Joint Movement for Patient-Specific Kinematic Characterization
,”
Proc. Inst. Mech. Eng., Part H
,
231
(
9
), pp.
831
838
. 10.1177/0954411917709492
26.
Dettwyler
,
M.
,
Stacoff
,
A.
,
Quervain
,
I. A. K.
, and
Stussi
,
E.
,
2004
, “
Modeling of the Ankle Joint Complex. Reflections With Regards to Ankle Prostheses
,”
Foot Ankle Surg.
,
10
(
3
), pp.
109
119
. 10.1016/j.fas.2004.06.003
27.
Dul
,
J.
, and
Johnson
,
G. E.
,
1985
, “
A Kinematic Model of the Human Ankle
,”
J. Biomed. Eng.
,
7
(
2
), pp.
137
143
. 10.1016/0141-5425(85)90043-3
28.
Feuerbach
,
J. W.
,
Grabiner
,
M. D.
,
Koh
,
T. J.
, and
Weiker
,
G. G.
,
1994
, “
Effect of an Ankle Orthosis and Ankle Ligament Anesthesia on Ankle Joint Proprioception
,”
Am. J. Sport. Med.
,
22
(
2
), pp.
223
229
. 10.1177/036354659402200212
29.
Erdogan
,
A.
,
Celebi
,
B.
,
Satici
,
A.
, and
Patoglu
,
V.
,
2017
, “
Assist-On Ankle: A Reconfigurable Ankle Exoskeleton With Series-Elastic Actuation
,”
Auton. Robots.
,
41
(
3
), pp.
743
758
. 10.1007/s10514-016-9551-7
30.
Huang
,
Z.
,
Li
,
Q.
, and
Ding
,
H.
,
2013
, “Theory of Parallel Mechanisms,”
Unified Mobility Methodology
,
Z
Huang
,
Q
Li
, and
H
Ding
, eds.,
Springer
,
Netherlands
, pp.
31
42
.
31.
Li
,
J.
,
Li
,
S.
,
Zhang
,
L.
,
Tao
,
C.
, and
Ji
,
R.
,
2018
, “
Position Solution and Kinematic Interference Analysis of a Novel Parallel Hip-Assistive Mechanism
,”
Mech. Mach. Theory
,
120
, pp.
265
287
. 10.1016/j.mechmachtheory.2017.10.002
32.
Gosselin
,
C.
, and
Angeles
,
J.
,
2002
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Robot. Autom.
,
6
(
3
), pp.
281
290
. 10.1109/70.56660
33.
Merlet
,
J. P.
,
2005
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robot
,”
ASME J. Mech. Des.
,
128
(
128
), pp.
199
206
. 10.1115/1.2121740
34.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
,
4
(
2
), pp.
3
9
. 10.1177/027836498500400201
35.
Chiacchio
,
P.
,
Yann
,
B.-V.
, and
Pierrot
,
F.
,
1997
, “
Force Polytope and Force Ellipsoid for Redundant Manipulators
,”
J. Robot. Syst.
,
14
(
8
), pp.
613
620
.<613::AID-ROB3>3.0.CO;2-P
36.
Chiu
,
S.
,
1988
, “
Task Compatibility of Manipulator Postures
,”
Int. J. Robot. Res.
,
7
(
5
), pp.
13
21
. 10.1177/027836498800700502
37.
Wu
,
J.
,
Li
,
T.
,
Wang
,
J.
, and
Wang
,
L.
,
2013
, “
Performance Analysis and Comparison of Planar 3-DOF Parallel Manipulators With One and Two Additional Branches
,”
J. Intell. Robot. Syst.
,
72
(
1
), pp.
73
82
. 10.1007/s10846-013-9824-8
38.
Yu
,
Y.
, and
Liang
,
W.
,
2014
, “
Manipulability Inclusive Principle for Hip Joint Assistive Mechanism Design Optimization
,”
Int. J. Adv. Manuf. Technol.
,
70
(
5
), pp.
929
945
. 10.1007/s00170-013-5323-0
39.
Angeles
,
J.
,
1992
, “
The Design of Isotropic Manipulator Architectures in the Presence of Redundancies
,”
Int. J. Robot. Res.
,
11
(
3
), pp.
196
201
. 10.1177/027836499201100303
40.
Zanganeh
,
K.
, and
Angeles
,
J.
,
1997
, “
Kinematic Isotropy and the Optimum Design of Parallel Manipulators
,”
Int. J. Robot. Res.
,
16
(
2
), pp.
185
197
. 10.1177/027836499701600205
41.
Gosselin
,
C.
,
1990
, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Robot. Autom.
,
6
(
3
), pp.
377
382
. 10.1109/70.56657
42.
Kim
,
H.
, and
Choi
,
Y.
,
2001
, “
Forward/Inverse Force Transmission Capability Analyses of Fully Parallel Manipulators
,”
IEEE Trans. Robot. Autom.
,
17
(
4
), pp.
526
531
. 10.1109/70.954767
43.
Graettinger
,
T.
, and
Krogh
,
N.
,
1988
, “
The Acceleration Radius: A Global Performance Measure for Robotic Manipulators
,”
IEEE J. Robot. Autom.
,
4
(
1
), pp.
60
69
. 10.1109/56.772
44.
Kim
,
C.
, and
Yoon
,
Y.
,
1997
, “
Task Space Dynamic Analysis for Multi-Arm Robot Using Isotropic Velocity and Acceleration Radii
,”
Robotica
,
15
(
3
), pp.
319
329
. 10.1017/S0263574797000362
45.
Chiacchio
,
P.
,
Chiaverini
,
S.
,
Sciavicco
,
L.
, and
Siciliano
,
B.
,
1991
, “
Task Space Dynamic Analysis of Multi-Arm System Configurations
,”
Int. J. Robot. Res.
,
10
(
6
), pp.
708
715
. 10.1177/027836499101000608
46.
Kim
,
Y.
, and
Desa
,
S.
,
1993
, “
Definition, Determination, and Characterization of Acceleration Sets for Spatial Manipulators
,”
Int. J. Robot. Res.
,
12
(
6
), pp.
572
587
. 10.1177/027836499301200605
47.
Asada
,
H.
,
1983
, “
A Geometrical Representation of Manipulator Dynamics and Its Application to Arm Design
,”
J. Dyn. Syst. Meas. Control
,
105
(
3
), pp.
131
135
. 10.1115/1.3140644
48.
Yoshikawa
,
T.
,
1985
, “
Dynamic Manipulability of Robot Manipulators
,”
Proceedings of 1985 IEEE International Conference on Robotics and Automation
,
St. Louis, MO
,
Mar. 25–28
, pp.
1033
1038
, Paper No. 108727.
49.
Ma
,
O.
, and
Angeles
,
J.
,
1990
, “
The Concept of Dynamics Isotropy and Its Applications to Inverse Kinematics and Trajectory Planning
,”
Proceedings of the 1990 IEEE International Conference on Robotics and Automation
,
Cincinnati, OJ
,
May 13–18
, pp.
481
486
, Paper No. 126024.
50.
Kurazume
,
R.
, and
Hasegawa
,
T.
,
2006
, “
A New Index of Serial-Link Manipulator Performance Combining Dynamic Manipulability and Manipulating Force Ellipsoid
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
1022
1028
. 10.1109/TRO.2006.878949
51.
Wu
,
J.
,
Zhang
,
B.
, and
Wang
,
L.
,
2016
, “
A Measure for Evaluation of Maximum Acceleration of Redundant and Nonredundant Parallel Manipulators
,”
J. Mech. Robot.
,
8
(
2
), p.
021001
. 10.1115/1.4031500
52.
Enferadi
,
J.
, and
Nikrooz
,
R.
,
2017
, “
The Performance Indices Optimization of a Symmetrical Fully Spherical Parallel Mechanism for Dimensional Synthesis
,”
J. Intell. Robot. Syst.
,
90
, pp.
1
17
. 10.1007/s10846-017-0675-6
53.
Kelaiaia
,
R.
,
Company
,
O.
, and
Zaati
,
A.
,
2012
, “
Multi-Objective Optimization of Parallel Kinematic Mechanisms by the Genetic Algorithms
,”
Robotica
,
30
(
5
), pp.
783
797
. 10.1017/S0263574711001032
54.
Tadokoro
,
S.
,
Kimura
,
I.
, and
Takamori
,
T.
,
1991
, “
A Measure for Evaluation of Dynamic Dexterity Based on a Stochastic Interpretation of Manipulator Motion
,”
Proceedings of 5th International Conference on Advanced Robotics, Robots in Unstructured Environments
,
Pisa, Italy
,
June 19–22
, pp.
509
514
, Paper No. 240602.
55.
Siegler
,
S.
,
Chen
,
J.
, and
Schneck
,
C.
,
1988
, “
The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joints-Part I: Kinematics
,”
ASME J. Biomech. Eng.
,
110
(
4
), pp.
364
373
. 10.1115/1.3108455
56.
Kurtz
,
R.
, and
Hayward
,
V.
,
1992
, “
Multiple-Goal Kinematic Optimization of a Parallel Spherical Mechanism With Actuator Redundancy
,”
IEEE Trans. Robot. Autom.
,
8
(
5
), pp.
644
651
. 10.1109/70.163788
57.
Wu
,
J.
,
Wang
,
J.
,
Li
,
T.
, and
Wang
,
L.
,
2007
, “
Analysis and Application of a 2-DOF Planar Parallel Mechanism
,”
J. Mech. Design
,
129
(
4
), pp.
434
437
. 10.1115/1.2437800
58.
Ng
,
C.
,
Ong
,
S.
, and
Nee
,
A.
,
2006
, “
Design and Development of 3-DOF Modular Micro Parallel Kinematic Manipulator
,”
Int. J. Adv. Manuf. Technol.
,
31
(
1–2
), pp.
188
200
. 10.1007/s00170-005-0166-y
59.
Qian
,
Z.
, and
Bi
,
Z.
,
2014
, “
Recent Development of Rehabilitation Robots
,”
Adv. Mech. Eng.
,
2014
, p.
563062
.
60.
Bi
,
Z.
,
2013
, “
Design of a Spherical Parallel Kinematic Machine for Ankle Rehabilitation
,”
Adv. Robotics
,
27
(
2
), pp.
121
132
. 10.1080/01691864.2012.703306
61.
Zhang
,
L.
,
Li
,
J.
,
Dong
,
M.
,
Fang
,
B.
,
Cui
,
Y.
,
Zuo
,
S.
, and
Zhang
,
K.
,
2019
, “
Design and Workspace Analysis of a Parallel Ankle Rehabilitation Robot (PARR)
,”
J. Healthc. Eng.
,
2019
, p.
4164790
. 10.1155/2019/4164790
62.
Saglia
,
J.
,
Tsagarakis
,
N.
,
Dai
,
J. S.
, and
Caldwell
,
D.
,
2013
, “
Control Strategies for Patient-Assisted Training Using the Ankle Rehabilitation Robot (ARBOT)
,”
IEEE/ASME Trans. Mech.
,
18
(
6
), pp.
1799
1808
. 10.1109/TMECH.2012.2214228
You do not currently have access to this content.