Abstract

This paper proposes a new kind of modular rolling robot called multi-loop rover (MLR), which is essentially a multi-loop linkage that is able to roll and switch its rolling directions. For ease of rolling, the MLR retains a multi-loop topological structure composed of a number of strut and node modules. First, the modular design and assembling method are introduced to construct an MLR. Then, the mobility is analyzed based on screw theory, and a brief formula is presented to calculate the degree-of-freedoms of the robot. The results show that all node modules only have translational motions, which can significantly reduce the complexity of kinematics. The forward and inverse kinematics are conducted to show the deformation properties. Based on the kinematic rolling principle, the morphing strategies for rolling and turning functions are developed. Finally, a physical prototype is manufactured and a serial of experiments are carried out to verify the proposed method.

References

1.
Armour
,
R. H.
, and
Vincent
,
J. F. V.
,
2006
, “
Rolling in Nature and Robotics: A Review
,”
J. Bionic Eng.
,
3
(
4
), pp.
195
208
. 10.1016/S1672-6529(07)60003-1
2.
Antol
,
J.
,
Chattin
,
R. L.
,
Copeland
,
B. M.
, and
Krizan
,
S. A.
,
2006
, “
The NASA Langley Mars Tumbleweed Rover Prototype
,”
Proceeding of the 44th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, Nevada
,
Jan. 9–12
, p.
64
.
3.
Ylikorpi
,
T.
,
Halme
,
A.
,
Jakubik
,
P.
,
Suomela
,
J.
, and
Vainio
,
M.
,
2004
, “
Biologically Inspired Solutions for Robotic Surface Mobility
,”
Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation
,
Noordwijk, The Netherlands
,
Nov. 2–4
, pp.
1
8
.
4.
Henschel
,
J.
,
2005
, “
Feature Creature—The Golden Wheel Spider
,”
Gobabeb Times
,
1
(
1
), p.
3
.
5.
Joshi
,
V. A.
,
Banavar
,
R. N.
, and
Hippalgaonkar
,
R.
,
2010
, “
Design and Analysis of a Spherical Mobile Robot
,”
Mech. Mach. Theory
,
45
(
2
), pp.
130
136
. 10.1016/j.mechmachtheory.2009.04.003
6.
Javadi
,
A. H.
, and
Mojabi
,
P.
,
2004
, “
Introducing Glory: A Novel Strategy for an Omnidirectional Spherical Rolling Robot
,”
ASME J. Dyn. Sys. Meas. Control
,
126
(
3
), pp.
678
683
. 10.1115/1.1789542
7.
Yue
,
M.
,
Deng
,
Z.
,
Yu
,
X.
, and
Yu
,
W.
,
2006
, “
Introducing HIT Spherical Robot: Dynamic Modeling and Analysis Based on Decoupled Subsystem
,”
2006 IEEE International Conference on Robotics and Biomimetics
,
Kuming, China
,
Dec. 17–20
, pp.
181
186
.
8.
Kong
,
X.
, and
Doak
,
R.
,
2011
, “
Conceptual Design and Analysis of Spherical Mobile Robots with an Omni-Wheel Based Internal Driving Unit
,”
ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering
,
Washington, DC
,
Aug. 28–31
, pp.
665
669
.
9.
Cai
,
Y.
,
Zhan
,
Q.
, and
Xi
,
X.
,
2012
, “
Path Tracking Control of a Spherical Mobile Robot
,”
Mech. Mach. Theory
,
51
, pp.
58
73
. 10.1016/j.mechmachtheory.2011.12.009
10.
Wait
,
K. W.
,
Jackson
,
P. J.
, and
Smoot
,
L. S.
,
2010
, “
Self Locomotion of a Spherical Rolling Robot Using a Novel Deformable Pneumatic Method
,”
Proceedings of IEEE International Conference On Robotics and Automation
,
Anchorage, AK
,
May 3–8
, pp.
3757
3762
.
11.
Sugiyama
,
Y.
, and
Hiral
,
S.
,
2006
, “
Crawling and Jumping by a Deform Robot
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
603
620
. 10.1177/0278364906065386
12.
Artusi
,
M.
,
Potz
,
M.
,
Aristizabal
,
J.
,
Menon
,
C.
,
Cocuzza
,
S.
, and
Debei
,
S.
,
2011
, “
Electroactive Elastomeric Actuators for the Implementation of a Deformable Spherical Rover
,”
IEEE-ASME Trans. Mech.
,
16
(
1
), pp.
50
57
. 10.1109/TMECH.2010.2090163
13.
Li
,
W.
,
Zhang
,
W.
,
Zou
,
H.
,
Peng
,
Z.
, and
Meng
,
G.
,
2018
, “
A Fast Rolling Soft Robot Driven by Dielectric Elastomer
,”
IEEE-ASME Trans. Mech.
,
23
(
4
), pp.
1630
1640
. 10.1109/TMECH.2018.2840688
14.
Yim
,
M.
,
1994
, “
New Locomotion Gaits
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
San Diego, CA
,
May 8–13
, pp.
2508
2514
.
15.
Hamlin
,
G. J.
, and
Sanderson
,
A. C.
,
1997
, “
Tetrobot: A Modular Approach to Parallel Robotics
,”
IEEE Rob. Automat. Mag.
,
4
(
1
), pp.
42
50
. 10.1109/100.580984
16.
Paul
,
C.
,
Valero-Cuevas
,
F. J.
, and
Lipson
,
H.
,
2006
, “
Design and Control of Tensegrity Robots for Locomotion
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
944
957
. 10.1109/TRO.2006.878980
17.
Hamlin
,
G. J.
, and
Sanderson
,
A. C.
,
1994
, “
A Novel Concentric Multilink Spherical Pair with Parallel Robotics Applications
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
San Diego, CA
,
May 8–13
, pp.
1267
1272
.
18.
Sastra
,
J.
,
Chitta
,
S.
, and
Yim
,
M.
,
2009
, “
Dynamic Rolling for a Modular Loop Robot
,”
Int. J. Rob. Res.
,
28
(
6
), pp.
758
773
. 10.1177/0278364908099463
19.
Liu
,
C.
,
Yao
,
Y.
,
Li
,
R.
,
Tian
,
Y.
,
Zhang
,
N.
,
Ji
,
Y.
, and
Kong
,
F.
,
2012
, “
Rolling 4R Linkages
,”
Mech. Mach. Theory
,
48
, pp.
1
14
. 10.1016/j.mechmachtheory.2011.10.005
20.
Yamawaki
,
T.
,
Mori
,
O.
, and
Omata
,
T.
,
2003
, “
Nonholonomic Dynamic Rolling Control of Reconfigurable 5R Closed Kinematic Chain Robot with Passive Pairs
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Taipei, China
,
Sept. 14–19
, pp.
4054
4059
.
21.
Wang
,
Y.
,
Wu
,
C.
,
Yu
,
L.
, and
Mei
,
Y.
,
2018
, “
Dynamics of a Rolling Robot of Closed Five-Arc-Shaped-Bar Linkage
,”
Mech. Mach. Theory
,
121
, pp.
75
91
. 10.1016/j.mechmachtheory.2017.10.010
22.
Tian
,
Y.
,
Yao
,
Y. A.
, and
Wang
,
J.
,
2015
, “
A Rolling 8-Bar Linkage Mechanism
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041002
. 10.1115/1.4029117
23.
Shen
,
W. M.
,
Krivokon
,
M.
,
Chiu
,
H.
,
Everist
,
J.
,
Rubenstein
,
M.
, and
Venkatesh
,
J.
,
2002
, “
Multimode Locomotion via SuperBot Reconfigurable Robots
,”
Auton. Rob.
,
20
(
2
), pp.
165
177
. 10.1007/s10514-006-6475-7
24.
Yoshida
,
E.
,
Murata
,
S.
,
Kamimura
,
A.
,
Tomita
,
K.
,
Kurokawa
,
H.
, and
Kokaji
,
S.
,
2002
, “
A Self-Reconfigurable Modular Robot: Reconfiguration Planning and Experiments
,”
Int. J. Rob. Res.
,
21
(
10–11
), pp.
903
915
. 10.1177/0278364902021010835
25.
Yim
,
M.
,
Roufas
,
K.
,
Duff
,
D.
,
Zhang
,
Y.
,
Eldershaw
,
C.
, and
Homans
,
S.
,
2003
, “
Modular Reconfigurable Robots in Space Applications
,”
Auton. Rob.
,
14
(
2–3
), pp.
225
237
. 10.1023/A:1022287820808
26.
Clark
,
P.
,
Rilee
,
M.
,
Curtis
,
S.
,
Truszkowski
,
W.
,
Marr
,
G.
,
Cheung
,
C.
, and
Rudisill
,
M.
,
2004
, “
BEES for ANTS: Space Mission Applications for the Autonomous Nanotechnology Swarm
,”
AIAA 1st Intelligent Systems Technical Conference
,
Chicago, IL
,
Sept. 20–22
, p.
6303
.
27.
Abrahantes
,
M.
, and
Smits
,
C.
,
2012
, “
Implementation and Control of a Reconfigurable 8-Tetrahedral Robot
,”
2012 IEEE International Conference on Electro/Information Technology
,
Indiana
,
May 6–8
, pp.
1
5
.
28.
Curtis
,
S.
,
Brandt
,
M.
,
Bowers
,
G.
,
Brown
,
G.
,
Cheung
,
C.
,
Cooperider
,
C.
,
Desch
,
M.
,
Desch
,
N.
,
Dorband
,
J.
,
Gregory
,
K.
,
Lee
,
K.
,
Lunsford
,
A.
,
Minetto
,
F.
,
Truszkowski
,
W.
,
Wesenberg
,
R.
, and
Vranish
,
J.
,
2007
, “
Tetrahedral Robotics for Space Exploration
,”
IEEE Aero. El. Sys. Mag.
,
22
(
6
), pp.
22
30
. 10.1109/MAES.2007.384077
29.
Wang
,
X.
,
Wang
,
X.
,
Zhang
,
Z.
, and
Zhao
,
Y.
,
2016
, “
Motion Planning of Kinematically Redundant 12-Tetrahedral Rolling Robot
,”
Int. J. Adv. Rob. Syst.
,
13
(
1
), p.
23
. 10.5772/62178
30.
Lee
,
W. H.
, and
Sanderson
,
A. C.
,
2002
, “
Dynamic Rolling Locomotion and Control of Modular Robots
,”
IEEE Trans. Rob. Autom.
,
18
(
1
), pp.
32
41
. 10.1109/70.988972
31.
Lyder
,
A.
,
Garcia
,
R. F. M.
, and
Stoy
,
K.
,
2008
, “
Mechanical Design of Odin, an Extendable Heterogeneous Deformable Modular Robot
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
, pp.
883
888
.
32.
Sproewitz
,
A.
,
Moeckel
,
R.
,
Maye
,
J.
, and
Ijspeert
,
A. J.
,
2008
, “
Learning to Move in Modular Robots Using Central Pattern Generators and Online Optimization
,”
Int. J. Rob. Res.
,
27
(
3–4
), pp.
423
443
. 10.1177/0278364907088401
33.
Paul
,
C.
,
Roberts
,
J. W.
,
Lipson
,
H.
, and
Cuevas
,
F. V.
,
2005
, “
Gait Production in a Tensegrity Based Robot
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Seattle, WA
July, 18–20
, pp.
216
222
.
34.
Shibata
,
M.
,
Saijyo
,
F.
, and
Hirai
,
S.
,
2009
, “
Crawling by Body Deformation of Tensegrity Structure Robots
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
4375
4380
.
35.
Hirai
,
S.
, and
Imuta
,
R.
,
2012
, “
Dynamic Simulation of six-Strut Tensegrity Robot Rolling
,”
Proceedings of IEEE International Conference on Robot Biomimetics
,
Guangzhou, China
,
Dec. 11–14
, pp.
198
204
.
36.
Koizumi
,
Y.
,
Shibata
,
M.
, and
Hirai
,
S.
,
2012
, “
Rolling Tensegrity Driven by Pneumatic Soft Actuators
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Saint Paul
, MN,
May 14–18
, pp.
1988
1993
.
37.
Du
,
W.
,
Ma
,
S.
,
Li
,
B.
,
Wang
,
M.
, and
Hirai
,
S.
,
2016
, “
Force Analytic Method for Rolling Gaits of Tensegrity Robots
,”
IEEE-ASME Trans. Mech.
,
21
(
5
), pp.
2249
2259
. 10.1109/TMECH.2016.2519559
38.
Zhang
,
M.
,
Geng
,
X.
,
Bruce
,
J.
,
Caluwaerts
,
K.
,
Vespignani
,
M.
,
SunSpiral
,
V.
,
Abbeel
,
P.
, and
Levine
,
S.
,
2017
, “
Deep Reinforcement Learning for Tensegrity Robot Locomotion
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Singapore
,
May 29–June 3
, pp.
634
641
.
39.
Surovik
,
D.
,
Wang
,
K.
,
Vespignani
,
M.
,
Bruce
,
J.
, and
Bekris
,
K. E.
,
2019
, “
Adaptive Tensegrity Locomotion: Controlling a Compliant Icosahedron With Symmetry-Reduced Reinforcement Learning
,”
Int. J. Rob. Res.
10.1177/0278364919859443
40.
Wei
,
X.
,
Tian
,
Y.
, and
Wen
,
S.
,
2019
, “
Design and Locomotion Analysis of a Novel Modular Rolling Robot
,”
Mech. Mach. Theory
,
113
, pp.
23
43
. 10.1016/j.mechmachtheory.2018.11.004
41.
Kiper
,
G.
,
Söylemez
,
E.
, and
Kisisel
,
A. U. O.
,
2007
, “
Polyhedral Linkages Synthesized Using Cardan Motion Along Radial Axes
,”
Proceedings of 12th IFToMM World Congress
,
Besançon, France
,
June 18–21
, pp.
17
21
.
42.
Ding
,
X.
,
Yang
,
Y.
, and
Dai
,
J.
,
2013
, “
Design and Kinematic Analysis of a Novel Prism Deployable Mechanism
,”
Mech. Mach. Theory
,
63
, pp.
35
49
. 10.1016/j.mechmachtheory.2013.01.001
43.
Li
,
R.
,
Yao
,
Y.
, and
Ding
,
X.
,
2018
, “
A Family of Reconfigurable Deployable Polyhedral Mechanisms Based on Semiregular and Johnson Polyhedral
,”
Mech. Mach. Theory
,
126
, pp.
344
358
. 10.1016/j.mechmachtheory.2018.04.021
44.
Li
,
R.
,
Sun
,
X.
,
Chen
,
Y.
,
Yao
,
Y. A.
, and
Ding
,
X.
,
2019
, “
Design and Analysis of Reconfigurable Deployable Polyhedral Mechanisms With Straight Elements
,”
ASME J. Mech. Robot.
,
11
(
4
), p.
044502
. 10.1115/1.4043601
45.
Wohlhart
,
K.
,
2017
, “
Cyclic Polyhedra and Linkages Derived Therefrom
,”
Mech. Mach. Theory
,
108
, pp.
142
159
. 10.1016/j.mechmachtheory.2016.10.014
46.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer Publishing Company, Incorporated
,
Berlin Heidelberg
.
47.
Tanev
,
T. K.
,
2000
, “
Kinematics of a Hybrid (Parallel–Serial) Robot Manipulator
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1183
1196
. 10.1016/S0094-114X(99)00073-7
48.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2006
, “
Type Synthesis of 4-DOF SP-Equivalent Parallel Manipulators: A Virtual Chain Approach
,”
Mech. Mach. Theory
,
41
(
11
), pp.
1306
1319
. 10.1016/j.mechmachtheory.2006.01.004
49.
Cha
,
S. H.
,
Lasky
,
T. A.
, and
Velinsky
,
S. A.
,
2009
, “
Determination of the Kinematically Redundant Active Prismatic Pair Variable Ranges of a Planar Parallel Mechanism for Singularity-Free Trajectories
,”
Mech. Mach. Theory
,
44
(
5
), pp.
1032
1044
. 10.1016/j.mechmachtheory.2008.05.010
50.
O'Brien
,
J. F.
, and
Wen
,
J. T.
,
1999
, “
Redundant Actuation for Improving Kinematic Manipulability
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Detroit, MI
,
May 10–15
, pp.
1520
1525
.
51.
Tian
,
Y.
,
Wei
,
X.
,
Joneja
,
A.
, and
Yao
,
Y. A.
,
2014
, “
Design and Rolling Analysis of a Novel Deformable Polyhedron Robot
,”
Int. J. Adv. Rob. Syst.
,
11
(
10
), p.
175
. 10.5772/59117
52.
Chen
,
L. H.
,
Kim
,
K.
,
Tang
,
E.
,
Li
,
K.
,
House
,
R.
,
Zhu
,
E. L.
,
Fountain
,
K.
,
Agogino
,
A. M.
,
Agogino
,
A.
, and
Synspriral
,
V.
,
2017
, “
Soft Spherical Tensegrity Robot Design Using Rod-Centered Actuation and Control
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
025001
. 10.1115/1.4036014
53.
Tian
,
Y.
, and
Yao
,
Y.
,
2015
, “
Dynamic Rolling Analysis of Triangular-Bipyramid Robot
,”
Robotica
,
33
(
4
), pp.
884
897
. 10.1017/S0263574714000666
54.
Tian
,
Y.
,
Zhang
,
D.
,
Yao
,
Y. A.
,
Kong
,
X.
, and
Li
,
Y.
,
2017
, “
A Reconfigurable Multi-mode Mobile Parallel Robot
,”
Mech. Mach. Theory
,
111
, pp.
39
65
. 10.1016/j.mechmachtheory.2017.01.003
You do not currently have access to this content.