Abstract

This paper presents a novel solution for the posture control and ride comfort between the proposed wheel-legged robot (four wheel-legged robot (FWLR)) and the unstructured terrain by means of an actively passively transformable suspension system. Unlike most traditional robots, each leg of FWLR is independent of each other with a spring-damping system (passive system) is connected in series with an actuator (active system), so the posture control and ride comfort in complex terrain can be realized by the combination between active and passive systems. To verify the performance of posture control in complex terrain, a prototype and complex terrain are established first, then a posture control model, algorithm, and controller considering the suspension system are proposed and verified by the comparison between co-simulation and experiment, the results showed that the pitch angle and roll angles in complex terrain can be controlled. To show the impact of the actively passively transformable suspension system on ride comfort (vibration isolation performance), different dynamic models with different degree-of–freedom (DOF) are established, the co-simulation results showed that the passive system and active posture control system can also effectively improve the ride comfort of FWLR in complex terrain. The research results of this paper have important reference significance and practical value for enriching and developing the mechanism design and theoretical research of wheel-legged robot and promoting the engineering application of all-terrain robot.

References

1.
Wei
,
Z.
,
Song
,
G. M.
,
Qiao
,
G. F.
,
Zhang
,
Y.
, and
Sun
,
H. Y.
,
2017
, “
Design and Implementation of a Leg-Wheel Robot: Transleg
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051001
. 10.1115/1.4037018
2.
Raibert
,
M.
,
Blankespoor
,
K.
,
Nelson
,
G.
, and
Playter
,
R.
,
2008
, “
BigDog, the Rough-Terrain Quadruped Robot
,” IFAC Proceedings Volumes,
41
(
2
), pp.
10822
10825
.
3.
Zhuang
,
H.
,
Gao
,
H.
,
Ding
,
L.
,
Liu
,
Z.
, and
Deng
,
Z.
,
2013
, “
Method for Analyzing Articulated Torques of Heavy-Duty Six-Legged Robot
,”
Chin. J. Mech. Eng.
,
26
(
4
), pp.
801
812
. 10.3901/CJME.2013.04.801
4.
Li
,
Y. B.
,
Li
,
J. M.
,
Ji
,
S. M.
,
Zheng
,
C.
, and
Zhao
,
Z. F.
,
2014
, “
Dynamic Modeling and Peak Torque Prediction of Servo Motor for a 3-DOF Parallel Humanoid Mechanical Leg
,”
Acta Armamentarii
,
35
(
11
), pp.
1928
1936
.
5.
Ben
,
T. P.
,
Goldenberg
,
A. A.
, and
Zu
,
J. W.
,
2008
, “
Design and Analysis of a Hybrid Mobile Robot Mechanism With Compounded Locomotion and Manipulation Capability
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072302
.10.1115/1.2918920
6.
Chen
,
G.
,
Jin
,
B.
, and
Chen
,
Y.
,
2018
, “
Nonsingular Fast Terminal Sliding Mode Posture Control for Six-Legged Walking Robots With Redundant Actuation
,”
Mechatronics
,
50
, pp.
1
15
. 10.1016/j.mechatronics.2018.01.011
7.
Quan
,
Q. Q.
, and
Ma
,
S. G.
,
2010
, “
Controllable Postures of a Dual-Crawler-Driven Robot
,”
Mechatronics
,
20
(
2
), pp.
281
292
. 10.1016/j.mechatronics.2010.01.001
8.
Allotta
,
B.
,
Costanzi
,
R.
,
Fanelli
,
F.
,
Monni
,
N.
, and
Ridolfi
,
A.
,
2015
, “
Single Axis FOG Aided Attitude Estimation Algorithm for Mobile Robots
,”
Mechatronics
,
30
, pp.
158
173
. 10.1016/j.mechatronics.2015.06.012
9.
Ibrahim
,
F.
,
Abouelsoud
,
A. A.
,
Elbab
,
A. M. R. F.
, and
Ogata
,
T.
,
2019
, “
Path Following Algorithm for Skid-Steering Mobile Robot Based on Adaptive Discontinuous Posture Control
,”
Adv. Rob.
,
33
(
9
), pp.
439
453
. 10.1080/01691864.2019.1597764
10.
Murray
,
R. C.
,
Ophaswongse
,
C.
, and
Agrawal
,
S. K.
,
2019
, “
Design of a Wheelchair Robot for Active Postural Support
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020911
. 10.1115/1.4042544
11.
Wu
,
W. G.
, and
Gao
,
L. Y.
,
2017
, “
Posture Self-Stabilizer of a Biped Robot Based on Training Platform and Reinforcement Learning
,”
Rob. Auton. Syst.
,
98
, pp.
42
55
. 10.1016/j.robot.2017.09.001
12.
Alamdari
,
A.
,
Hérin
,
R.
, and
Krovi
,
V. N.
,
2013
,
Quantitative Kinematic Performance Comparison of Reconfigurable Leg-Wheeled Vehicles
, Nature-Inspired Mobile Robotics, pp.
585
592
.
13.
Tharakeshwar
,
A.
, and
Ghosal
,
A.
,
2015
, “
Modeling and Simulation of a Three-Wheeled Mobile Robot on Uneven Terrains With Two-Degree-of-Freedom Suspension Mechanisms
,”
Mech. Based Des. Struct. Mach.
,
43
(
4
), pp.
466
486
. 10.1080/15397734.2015.1026350
14.
Li
,
Q. M.
,
Ren
,
H. Y.
,
Pu
,
W. D.
, and
Jiang
,
J. X.
,
2019
, “
Trotting Gait Control of the Quadruped Robot With an Elastic Linkage
,”
Robot
,
41
(
2
), pp.
1
9
.
15.
Piovan
,
G.
, and
Byl
,
K.
,
2012
, “
Enforced Symmetry of the Stance Phase for the Spring-Loaded Inverted Pendulum
,”
2012 IEEE International Conference on Robotics and Automation (ICRA)
,
St. Paul, MN
, pp.
1908
1914
.
16.
Rutschmann
,
M.
,
Satzinger
,
B.
,
Byl
,
M.
, and
Byl
,
K.
,
2012
, “
Nonlinear Model Predictive Control for Rough-Terrain Robot Hopping
,”
IEEE International Conference on International Robotics
,
Vilamoura, Portugal
, pp.
1859
1864
.
17.
Yesilevskiy
,
Y.
,
Gan
,
Z. Y.
, and
Remy
,
C. D.
,
2018
, “
Energy-Optimal Hopping in Parallel and Series Elastic One-Dimensional Monopeds
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031008
. 10.1115/1.4039496
18.
Gor
,
M. M.
,
Pathak
,
P. M.
,
Samantaray
,
A. K.
,
Yang
,
J. M.
, and
Kwak
,
S. W.
,
2014
, “
Reduction in Body Disturbance of Quadruped Robot Using two Moving Appendage
,”
International Conference on Bond Graph Modeling and Simulation
,
Monterey, CA
, pp.
85
92
.
19.
Chen
,
G.
,
Jin
,
B.
, and
Chen
,
Y.
,
2017
, “
Tripod Gait-Based Turning Gait of a Six-Legged Walking Robot
,”
J. Mech. Sci. Technol.
,
31
(
3
), pp.
1401
1411
. 10.1007/s12206-017-0241-y
20.
Chen
,
G.
,
Jin
,
B.
, and
Chen
,
Y.
,
2017
, “
Accurate Position and Posture Control of a Redundant Hexapod Robot
,”
Arabian J. Sci. Eng.
,
42
(
5
), pp.
2031
2042
. 10.1007/s13369-017-2421-6
21.
Luo
,
Y.
,
Li
,
Q. M.
, and
Liu
,
Z. X.
,
2014
, “
Design and Optimization of Wheel-Legged Robot: Rolling-Wolf
,”
Chin. J. Mech. Eng.
,
27
(
6
), pp.
1133
1142
. 10.3901/CJME.2014.0905.144
22.
Jiang
,
H.
,
Xu
,
G. Y.
,
Zeng
,
W.
, and
Gao
,
F.
,
2019
, “
Design and Kinematic Modeling of a Actively-Passively Transformable Mobile Robot
,”
Mech. Mach. Theory
,
142
, pp.
1
23
. 10.1016/j.mechmachtheory.2019.103591
23.
Grand
,
C.
,
Benamar
,
F.
,
Plumet
,
F.
, and
Bidaud
,
P.
,
2004
, “
Stability and Traction Optimization of a Reconfigurable Wheel-Legged Robot
,”
Int. J. Rob. Res.
,
23
(
10–11
), pp.
1041
1058
. 10.1177/0278364904047616
24.
Grand
,
C.
,
Benamar
,
F.
, and
Plumet
,
F.
,
2010
, “
Motion Kinematics Analysis of Wheeled-Legged Rover Over 3D Surface with Posture Adaptation
,”
Mech. Mach. Theory
,
45
(
3
), pp.
477
495
. 10.1016/j.mechmachtheory.2009.10.007
25.
Zheng
,
L.
,
Li
,
Y. N.
,
Wei
,
J. S.
, and
Shao
,
J.
,
2009
, “
Coordinated Control of Semi-Active Suspension With Magnetorheological Dampers and Electrical Power Assist Steer System
,”
J. Vib. Eng.
,
22
(
5
), pp.
503
511
.
26.
Wang
,
Q. W.
,
Zhao
,
Y. Q.
,
Xu
,
H.
, and
Deng
,
Y. J.
,
2019
, “
Adaptive Backstepping Control With Grey Signal Predictor for Nonlinear Active Suspension System Matching Mechanical Elastic Wheel
,”
Mech. Syst. Sig. Process.
,
131
, pp.
97
111
. 10.1016/j.ymssp.2019.05.046
27.
Ma
,
F. W.
,
Ni
,
L. W.
,
Wu
,
L.
, and
Nie
,
J. H.
,
2018
, “
Pitching Attitude Closed Loop Control of Wheel-Legged All Terrain Mobile Robot With Active Suspension
,”
Trans. Chin. Soc. Agric. Eng.
,
34
(
20
), pp.
20
27
.
28.
Muller
,
J.
,
Schneider
,
M.
, and
Hiller
,
M.
,
2000
, “
Modeling, Simulation, and Model-Based Control of the Walking Machine ALDURO
,”
IEEE-ASME Trans. Mech.
,
5
(
2
), pp.
142
152
. 10.1109/3516.847087
29.
Wilcox
,
B. R.
,
2008
, “
ATHLETE: An Option for Mobile Lunar Landers
,”
Proceedings of the Aerospace Conference
,
Big Sky, MT
, pp.
2711
2718
.
30.
Xu
,
K.
,
Ding
,
X. L.
, and
Li
,
K. J.
,
2012
, “
Stride Size and Stability Analysis of a Radially Symmetrical Hexapod Robot in Three Typical Gaits
,”
Jiqiren/Robot
,
34
(
2
), pp.
231
241
.
31.
Thomson
,
T.
,
Sharf
,
I.
, and
Beckman
,
B.
,
2012
, “
Kinematic Control and Posture Optimization of a Redundantly Actuated Quadruped Robot
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
St. Paul, MN
, pp.
1895
1900
.
32.
Krovi
,
V.
, and
Kumar
,
V.
,
1999
, “
Modeling and Control of a Hybrid Locomotion System
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
448
455
. 10.1115/1.2829482
33.
Sun
,
Y.
, and
Ma
,
S. G.
,
2011
, “
Decoupled Kinematic Control of Terrestrial Locomotion for an EPaddle-Based Reconfigurable Amphibious Robot
,”
IEEE International Conference on Robotics
,
Shanghai, China
, pp.
1223
1228
.
34.
Nakajima
,
S.
,
Nakano
,
E.
, and
Takahashi
,
T.
,
2004
, “
Motion Control Technique for Practical use of a Leg-Wheel Robot on Unknown Outdoor Rough Terrains
,”
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Sendai, Japan
, pp.
1353
1358
.
35.
Wilcox
,
B. H.
,
Litwin
,
T.
,
Biesiadecki
,
J.
,
Matthews
,
J.
,
Heverly
,
M.
,
Morrison
,
J.
,
Townsend
,
J.
,
Ahmad
,
N.
,
Sirota
,
A.
, and
Cooper
,
B.
,
2007
, “
ATHLETE: A Cargo Handling and Manipulation Robot for the Moon
,”
J. Field Rob.
,
24
(
5
), pp.
421
434
. 10.1002/rob.20193
36.
Ding
,
X. L.
,
Wang
,
Z. Y.
, and
Rovetta
,
A.
,
2010
, “
Typical Gaits and Motion Analysis of a Hexagonal Symmetrical Hexapod Robot
,”
Jiqiren/Robot
,
32
(
6
), pp.
759
765
.
37.
Pan
,
X. X.
,
Xu
,
K.
,
Wang
,
Y. B.
, and
Ding
,
X. L.
,
2018
, “
Design and Analysis of a Wheel-Legged Robot With a Suspension System
,”
Robot
,
40
(
3
), pp.
1
12
.
38.
Siegwart
,
R.
,
Lamon
,
P.
,
Estier
,
T.
,
Lauria
,
M.
, and
Piguet
,
R.
,
2002
, “
Innovative Design for Wheeled Locomotion in Rough Terrain
,”
Rob. Auton. Syst.
,
40
(
2–3
), pp.
151
162
. 10.1016/S0921-8890(02)00240-3
39.
Niu
,
J. Y.
,
Wang
,
H. B.
,
Shi
,
H. M.
,
Pop
,
N.
,
Li
,
D.
,
Li
,
S. S.
, and
Wu
,
S. Z.
,
2018
, “
Study on Structural Modeling and Kinematics Analysis of a Novel Wheel-Legged Rescue Robot
,”
Int. J. Adv. Rob. Syst.
,
15
(
1
), pp.
1
17
.
40.
Chew
,
C. M.
,
Hong
,
G. S.
, and
Zhou
,
W.
,
2004
, “
Series Damper Actuator: A Novel Force/Torque Control Actuator
,”
IEEE-RAS International Conference on Humanoid Robots
,
Santa Monica, CA
.
41.
Laffranchi
,
M.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2010
, “
A Variable Physical Damping Actuator (VDPA) for Compliant Robotic Joint
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Anchorage, AK
.
42.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2016
, “
Design of Articulated Leg-Wheel Subsystem by Kinetostatic Optimization
,”
Mech. Mach. Theory
,
100
, pp.
222
234
. 10.1016/j.mechmachtheory.2016.02.010
43.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2016
, “
Static Balancing of Highly Reconfigurable Articulated Wheeled Vehicles for Power Consumption Reduction of Actuators
,”
Int. J. Mech. Rob. Syst.
,
3
(
1
), pp.
15
31
. 10.1504/IJMRS.2016.077035
44.
Zhang
,
J.
,
Shaw
,
A. D.
,
Amoozgar
,
M.
,
Friswell
,
M. I.
, and
Woods
,
B. K. S.
,
2019
, “
Bidirectional Torsional Negative Stiffness Mechanism for Energy Balancing Systems
,”
Mech. Mach. Theory
,
131
, pp.
261
277
. 10.1016/j.mechmachtheory.2018.10.003
45.
Ma
,
F. W.
,
Ni
,
L. W.
,
Xu
,
G. J.
,
Ge
,
L. H.
,
Nie
,
J. H.
, and
Wu
,
L.
,
2020
, “
Position and Attitude Control of all Terrain Robot with Suspension System
,”
J. Jilin Univ. (Engineering and Technology Edition)
,
50
(4), pp.
1503
1516
. 10.13229/j.cnki.jdxbgxb20190266
46.
Youn
,
I.
,
Wu
,
L.
,
Youn
,
E.
, and
Tomizuka
,
M.
,
2015
, “
Attitude Motion Control of the Active Suspension System with Tracking Controller
,”
Int. J. Automot. Tech-Kor
,
16
(
4
), pp.
593
601
. 10.1007/s12239-015-0060-z
47.
Wu
,
L.
,
Youn
,
I.
, and
Tomizuka
,
M.
,
2016
, “
Integrated Attitude Motion and Lateral Stability Control of a Vehicle via Active Suspension and Rear-Wheel Steering Control System
,”
Dynamics of Vehicles on Roads and Tracks
,
Graz, Austria
, 2015, pp.
365
374
. 10.1201/b21185-41
48.
Wu
,
L.
,
Khan
,
M. A.
,
Youn
,
E.
,
Youn
,
I.
, and
Tomizuka
,
M.
,
2018
, “
Attitude Motion Control of Vehicle Including the Active Passenger Seat System
,”
Int. J. Veh. Des.
,
78
(
1–4
), pp.
131
160
.
49.
Gu
,
C.
,
Jun
,
Y.
, and
Xinbo
,
C.
,
2018
, “
Robust Control and Optimization of a Rocker-Pushrod Electromagnetic Active Suspension
,”
Automot. Eng.
,
40
(
1
), pp.
34
40
.
You do not currently have access to this content.