Abstract

Geckos can climb freely on various types of surfaces using their flexible and adhesive toes. Gecko-inspired robots are capable of climbing on different surface conditions and have shown many important applications. Nonetheless, due to poor flexibility of toes, the movements of gecko-inspired robots are restricted to flat surfaces. To improve the flexibility, by utilizing design technique of soft actuator and incorporating the characteristics of a real gecko's toe, the design of new bionic soft toes is proposed. The abilities of this bionic toe are verified using modeling and two soft toes are manufactured. One is Type A toe having varied semi-circle cross sections as the feature of real gecko toe and the other is Type B toe with a constant semi-circle cross section. The bending behaviors of the bionic toes subjected to a range of hydraulic pressure are also experimentally studied. It demonstrated that both toes can perform similarly large bending angles for the adduction (attachment) and abduction (detachment) motions. In comparisons, Type B toe exhibits larger output force, which is ascribed to the fact that at proximal section of Type B corresponds to larger volume for bearing fluid. Both toes can not only provide sufficient adhesion but can be quickly detached with low peeling forces. Finally, different curved surfaces are used to further justify the applicability of these bionic toes. In particular, the flexible toes developed also have the advantages of low cost, lightweight, and simple control, which is desirable for wall-climbing robots.

References

1.
Song
,
Y.
,
Lu
,
X.
,
Zhou
,
J.
,
Wang
,
Z.
,
Zhang
,
Z.
, and
Dai
,
Z.
,
2020
, “
Geckos Distributing Adhesion to Toes in Upside-Down Running Offers Bioinspiration to Robots
,”
J. Bionic E.
,
17
(
3
), pp.
570
579
.
2.
Menon
,
C.
, and
Sitti
,
M.
,
2006
, “
A Biomimetic Climbing Robot Based on the Gecko
,”
J. Bionic E.
,
3
(
3
), pp.
115
125
.
3.
Yu
,
J.
,
Chary
,
S.
,
Das
,
S.
,
Tamelier
,
J.
,
Pesika
,
N. S.
,
Turner
,
K. L.
, and
Israelachvili
,
J.
,
2011
, “
Gecko Inspired Dry Adhesive for Robotic Applications
,”
Adv. Funct. Mater.
,
21
(
16
), pp.
3010
3018
.
4.
Henrey
,
M.
,
Ahmed
,
A.
,
Boscariol
,
P.
,
Shannon
,
L.
, and
Menon
,
C.
,
2014
, “
Abigaille-III: A Versatile, Bioinspired Hexapod for Scaling Smooth Vertical Surfaces
,”
J. Bionic E.
,
11
(
1
), pp.
1
17
.
5.
Yu
,
Z.
,
Yang
,
B.
,
Yang
,
S. X.
, and
Dai
,
Z.
,
2017
, “
Vertical Climbing Locomotion of a New Gecko Robot Using Dry Adhesive Material
,”
Int. J. Robot. Autom.
,
32
(
4
), pp.
425
431
.
6.
Yu
,
Z.
,
Wang
,
Z.
,
Liu
,
R.
,
Wang
,
P.
, and
Dai
,
Z.
,
2013
, “
Stable Gait Planning for a Gecko-Inspired Robot to Climb on Vertical Surface
,”
IEEE International Conference on Mechatronics and Automation
,
Takamatsu, Japan
,
Aug. 4–7
, pp.
307
311
.
7.
Cutkosky
,
M. R.
, and
Kim
,
S.
,
2009
, “
Design and Fabrication of Multi-Material Structures for Bioinspired Robots
,”
Philos. T. R. Soc. A
,
367
(
1894
), pp.
1799
1813
.
8.
He
,
Q.
,
Yu
,
M.
,
Ding
,
Y.
, and
Dai
,
Z.
,
2012
, “
Synthesis and Characterization of Multiwalled Carbon Nanotube/IPMC Actuator for Imitating Locomotion of Gecko's Toes
,”
Proceedings of SPIE-The International Society for Optical Engineering
,
CA
,
Apr. 3
, pp.
38
46
.
9.
Wei
,
S.
,
Wang
,
T.
, and
Gu
,
G.
,
2017
, “
Design of a Soft Pneumatic Robotic Gripper Based on Fiber-Reinforced Actuator
,”
Adv. Mech. Eng.
,
53
(
13
), pp.
29
38
.
10.
Connolly
,
F.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2017
, “
Automatic Design of Fiber-Reinforced Soft Actuators for Trajectory Matching
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
1
), pp.
51
56
.
11.
She
,
Y.
,
Li
,
C.
,
Cleary
,
J.
, and
Su
,
H. J.
,
2015
, “
Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors
,”
J. Mech. Robot.
,
7
(
2
), p.
021007
.
12.
Gong
,
Z.
,
Cheng
,
J.
,
Chen
,
X.
,
Sun
,
W.
,
Fang
,
X.
, and
Hu
,
K.
,
2018
, “
A Bio-Inspired Soft Robotic Arm: Kinematic Modeling and Hydrodynamic Experiments
,”
J. Bionic E.
,
15
(
2
), pp.
204
219
.
13.
Modabberifar
,
M.
, and
Spenko
,
M.
,
2020
, “
Development of a Gecko-Like Robotic Gripper Using Scott-Russell Mechanisms
,”
Robotica
,
38
(
3
), pp.
541
549
.
14.
Satheeshbabu
,
S.
, and
Krishnan
,
G.
,
2019
, “
Modeling the Bending Behavior of Fiber-Reinforced Pneumatic Actuators Using a Pseudo-Rigid-Body Model
,”
J. Mech. Robot.
,
11
(
3
), p.
031011
.
15.
Felt
,
W.
, and
David Remy
,
C.
,
2018
, “
A Closed-Form Kinematic Model for Fiber-Reinforced Elastomeric Enclosures
,”
J. Mech. Robot.
,
10
(
1
), p.
014501
.
16.
Li
,
Q.
, and
Guo
,
T. M.
,
1991
, “
A Study on the Supercompressibility and Compressibility Factors of Natural Gas Mixtures
,”
J. Petrol. Sci. Eng.
,
6
(
3
), pp.
235
247
.
17.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Soft Robotics: Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
18.
Dharmawan
,
A. G.
,
Xavier
,
P.
,
Hariri
,
H. H.
,
Soh
,
G. S.
,
Baji
,
A.
,
Bouffanais
,
R.
,
Foong
,
S.
,
Low
,
H. Y.
, and
Wood
,
K. L.
,
2019
, “
Design, Modeling, and Experimentation of a Bio-Inspired Miniature Climbing Robot With Bilayer Dry Adhesives
,”
J. Mech. Robot.
,
11
(
2
), p.
020902
.
19.
Gorb
,
S.
,
Varenberg
,
M.
,
Peressadko
,
A.
, and
Tuma
,
J.
,
2007
, “
Biomimetic Mushroom-Shaped Fibrillar Adhesive Microstructure
,”
J. R. Soc. Interface
,
4
(
13
), pp.
271
275
.
20.
Hossfeld
,
C. K.
,
Schneider
,
A. S.
,
Arzt
,
E.
, and
Frick
,
C. P.
,
2013
, “
Detachment Behavior of Mushroom-Shaped Fibrillar Adhesive Surfaces in Peel Testing
,”
Langmuir
,
29
(
49
), pp.
15394
15404
.
21.
Raut
,
H. K.
,
Baji
,
A.
,
Hariri
,
H. H.
,
Parveen
,
H.
,
Soh
,
G. S.
,
Low
,
H. Y.
, and
Wood
,
K. L.
,
2017
, “
Gecko-Inspired Dry Adhesive Based on Micro-Nanoscale Hierarchical Arrays for Application in Climbing Devices
,”
ACS Appl. Mater. Interfaces
,
10
(
1
), pp.
1288
1296
.
22.
Murphy
,
M. P.
,
Kute
,
C.
,
Mengüç
,
Y.
, and
Sitti
,
M.
,
2011
, “
Waalbot II: Adhesion Recovery and Improved Performance of a Climbing Robot Using Fibrillar Adhesives
,”
Int. J. Robot. Res.
,
30
(
1
), pp.
118
133
.
23.
Rui
,
C.
,
2015
, “
A Gecko-Inspired Electroadhesive Wall-Climbing Robot
,”
IEEE Potentials
,
34
(
2
), pp.
15
19
.
24.
Polygerinos
,
P.
,
Wang
,
Z.
,
Overvelde
,
J. T. B.
,
Galloway
,
K. C.
, and
Walsh
,
C. J.
,
2015
, “
Modeling of Soft Fiber-Reinforced Bending Actuators
,”
IEEE T. Robot.
,
31
(
3
), pp.
778
789
.
25.
Deimel
,
R.
, and
Brock
,
O.
,
2016
, “
A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping
,”
Int. J. Robot. Res.
,
35
(
1
), pp.
161
185
.
26.
Autumn
,
K. K.
, and
Gravish
,
N. N.
,
2008
, “
Gecko Adhesion: Evolutionary Nanotechnology
,”
Philos. T. R. Soc. A
,
366
(
1870
), pp.
1575
1590
.
27.
Ceccarelli
,
M.
,
Li
,
H.
,
Carbone
,
G.
, and
Huang
,
Q.
,
2005
, “
Conceptual Kinematic Design and Performance Evaluation of a Chameleon-Like Service Robot for Space Stations
,”
Int. Adv. Robot. Syst.
,
12
(
3
), p.
17
.
28.
Lotfiani
,
A.
,
Zhao
,
H.
,
Shao
,
Z.
, and
Yi
,
X.
,
2019
, “
Torsional Stiffness Improvement of a Soft Pneumatic Finger Using Embedded Skeleton
,”
J. Mech. Robot
,
12
(
1
), pp.
1
23
.
29.
Yu
,
Y. S.
, and
Zhao
,
Y. P.
,
2009
, “
Deformation of PDMS Membrane and Microcantilever by a Water Droplet: Comparison Between Mooney-Rivlin and Linear Elastic Constitutive Models
,”
J. Colloid Interface Sci.
,
332
(
2
), pp.
467
476
.
30.
Hardy
,
B. S.
,
Uechi
,
K.
,
Zhen
,
J.
, and
Kavehpour
,
H. P.
,
2009
, “
The Deformation of Flexible PDMS Microchannels Under a Pressure Driven Flow
,”
Lab. Chip
,
9
(
7
), pp.
935
938
.
31.
Gorissen
,
B.
,
Donose
,
R.
,
Reynaerts
,
D.
, and
Volder
,
M. D.
,
2011
, “
Flexible Pneumatic Micro-Actuators: Analysis and Production
,”
Procedia Eng.
,
25
(
35
), pp.
681
684
.
32.
Ali
,
N. B. H.
,
Sychterz
,
A. C.
, and
Smith
,
I. F.
,
2017
, “
A Dynamic-Relaxation Formulation for Analysis of Cable Structures With Sliding-Induced Friction
,”
Int. J. Solids Struct.
,
126
, pp.
240
251
.
33.
Gillies
,
A. G.
,
Henry
,
A.
,
Lin
,
H.
,
Ren
,
A.
,
Shiuan
,
A.
,
Fearing
,
R. S.
, and
Full
,
R. J.
,
2014
, “
Gecko Toe and Lamellar Shear Adhesion on Macroscopic, Engineered Rough Surfaces
,”
J. Exp. Bio.
,
217
(
2
), pp.
283
289
.
34.
Wang
,
Z.
,
Dai
,
Z.
,
Ji
,
A.
,
Ren
,
L.
,
Xing
,
Q.
, and
Dai
,
L.
,
2015
, “
Biomechanics of Gecko Locomotion: the Patterns of Reaction Forces on Inverted, Vertical and Horizontal Substrates
,”
Bioinspir. Biomim.
,
10
(
1
), p.
016019
.
35.
Qian
,
S.
,
Zhang
,
L.
,
Yang
,
Q.
,
Bao
,
G.
,
Wang
,
Z.
, and
Qi
,
L.
,
2008
, “
Research on Output Force of Flexible Pneumatic Bending Joint
,”
10th International Conference on Control, Automation, Robotics and Vision
,
Hanoi, Vietnam
,
Dec. 17–20
, pp.
144
148
.
36.
Kan
,
Z.
,
Peng
,
H.
,
Chen
,
B.
,
Xie
,
X.
, and
Sun
,
L.
,
2019
, “
Investigation of Strut Collision in Tensegrity Statics and Dynamics
,”
Int. J. Solids Struct.
,
167
, pp.
202
219
.
37.
Boscariol
,
P.
,
Henrey
,
M. A.
,
Li
,
Y.
, and
Menon
,
C.
,
2013
, “
Optimal Gait for Bioinspired Climbing Robots Using Dry Adhesion: A Quasi-Static Investigation
,”
J. Bionic E.
,
10
(
1
), pp.
1
11
.
38.
Hu
,
S.
,
Lopez
,
S.
,
Niewiarowski
,
P. H.
, and
Xia
,
Z.
,
2012
, “
Dynamic Self-Cleaning in Gecko Setae via Digital Hyperextension
,”
J. R. Soc. Interface
,
9
(
76
), pp.
2781
2790
.
39.
Murphy
,
M. P.
, and
Sitti
,
M.
,
2007
, “
Waalbot: An Agile Small-Scale Wall-Climbing Robot Utilizing Dry Elastomer Adhesives
,”
IEEE-ASME T. Mech.
,
12
(
3
), pp.
330
338
.
40.
Galloway
,
K. C.
,
Polygerinos
,
P.
,
Walsh
,
C. J.
, and
Wood
,
R. J.
,
2013
, “
Mechanically Programmable Bend Radius for Fiber-Reinforced Soft Actuators
,”
IEEE International Conference on Advanced Robotics (ICAR)
,
Karlsruhe, Germany
,
May 6–10
, pp.
1
6
.
41.
Wall
,
V.
,
Deimel
,
R.
, and
Brock
,
O.
,
2015
, “
Selective Stiffening of Soft Actuators Based on Jamming
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
252
257
.
42.
Kan
,
Z.
,
Peng
,
H.
, and
Chen
,
B.
,
2019
, “
A Simple Linear Complementarity Approach for Sliding Cable Modeling Considering Friction
,”
Mech. Syst. Signal Pr.
,
130
, pp.
293
314
.
You do not currently have access to this content.